
www.manaraa.com

University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

5-2017

Hierarchical Active Learning Application to
Mitochondrial Disease Protein Dataset
James D. Duin
University of Nebraska-Lincoln, jamesdduin@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Artificial Intelligence and Robotics Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Duin, James D., "Hierarchical Active Learning Application to Mitochondrial Disease Protein Dataset" (2017). Computer Science and
Engineering: Theses, Dissertations, and Student Research. 126.
http://digitalcommons.unl.edu/computerscidiss/126

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/126?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

HIERARCHICAL ACTIVE LEARNING APPLICATION TO MITOCHONDRIAL

DISEASE PROTEIN DATASET

by

James D. Duin

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Stephen Scott

Lincoln, Nebraska

May, 2017

www.manaraa.com

HIERARCHICAL ACTIVE LEARNING APPLICATION TO MITOCHONDRIAL

DISEASE PROTEIN DATASET

James D. Duin, M.S.

University of Nebraska, 2017

Adviser: Stephen Scott

This study investigates an application of active machine learning to a protein

dataset developed to identify the source of mutations which give rise to mitochon-

drial disease. The dataset is labeled according to the protein’s location of origin

in the cell; whether in the mitochondria or not, or a specific target location in

the mitochondria’s outer or inner membrane, its matrix, or its ribosomes. This

dataset forms a labeling hierarchy. A new machine learning approach is investi-

gated to learn the high-level classifier, i.e., whether the protein is a mitochondrion,

by separately learning finer-grained target compartment concepts and combin-

ing the results. This approach is termed active over-labeling. In experiments on

the protein dataset it is shown that active over-labeling improves area under the

precision-recall curve compared to standard passive or active learning. Because

finer-grained labels are more costly to obtain, alternative strategies exploring using

fixed proportions of a given budget to buy fine vs. coarse labels at various costs

are compared and presented. Finally, we present a cost-sensitive active learner that

uses a multi-armed bandit approach to dynamically choose the label granularity

to purchase, and show that the bandit-based learner is robust to variations in both

labeling cost and budget.

www.manaraa.com

DEDICATION

This thesis is dedicated to my parents Paul and Vicki Duin and fiancée Anna

Spady.

www.manaraa.com

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Stephen Scott for continual guidance in

investigating this research topic, and Yuji Mo and Dr. Douglas Downey for their

work in developing the HAL and BANDIT methodologies. I would like to thank

Dr. Juan Cui and Dr. Ashok Samal for serving on my committee. Additionally, I

would like to thank Jiang Shu and Kevin Chiang for their assistance accessing and

understanding the protein dataset that is the subject of this thesis.

www.manaraa.com

Contents

Contents

List of Figures

List of Tables

1 Introduction 1

2 Background and Theory 4

2.1 Machine Learning . 4

2.2 Evaluating Classifier Performance . 7

2.3 Hierarchical Bioinformatics Data Set 9

2.4 Coarse-grained vs. Fine-grained Trade Off 12

2.5 Active Over-Labeling . 14

2.6 Hierarchical Active Learning . 16

2.7 Dynamically Adapting Purchase Proportions 18

3 Related Work 21

3.1 Previous work in Active Learning . 21

3.2 Application to Dispatch Dataset . 22

www.manaraa.com

4 Experimental Setup 24

4.1 Training and Testing Coarse-Grain and Fine-Grain Classifiers 25

4.2 Varying SVM Scaling Methods . 29

4.3 Varying SVM Kernels . 30

4.4 Varying SVM Feature Selection . 31

4.5 Varying Logistic Regression Scaling 32

4.6 Varying Logistic Regression Feature Selection 33

4.7 Varying Logistic Regression Positive Class Weight and Cost 34

4.8 Varying Logistic Regression Fine Class Weights 36

4.8.1 Tune Fine Class 1 Weights . 37

4.8.2 Tune Fine Class 2 Weights . 38

4.8.3 Tune Fine Class 3 Weights . 38

4.8.4 Tune Fine Class 4 Weights . 39

4.8.5 Tune Fine Class 5 Weights . 40

4.8.6 Tune Fine Class 6 Weights . 42

4.8.7 Tune Fine Class 7 Weights . 42

4.8.8 Tune Fine Class 8 Weights . 43

4.9 Varying Logistic Regression Tolerance 44

4.10 Varying Sample Weight On Test Set and Dropping Intermediate

ROC Curve Values . 45

4.11 Varying Logistic Regression Positive Class Weight for Full Dataset . 47

4.12 Varying SVM Cost and Gamma . 48

5 Results and Analysis 50

5.1 SVM and Logit Classifier Performance 51

5.2 Active vs. Passive Curve Analysis . 54

www.manaraa.com

5.2.1 Plots for Logistic Regression Active vs. Passive Curves 55

5.2.2 Plots for SVM Active vs. Passive Curves 60

5.3 Plots for Fine Fixed Ratio Results . 62

5.4 BANDIT Approach Results . 69

6 Conclusions and Future Work 74

Bibliography

www.manaraa.com

List of Figures

2.1 Examples of PR and ROC curves with their corresponding AUC values. 9

2.2 The protein dataset hierarchy of labels along with the instance count

for each label. 12

2.3 Demonstration of a dataset that would benefit from multiple fine-

grained learners for each circle type, from [1]. 14

2.4 A labeling tree based on the text categorization dataset RCV1 [2]. 15

2.5 Diagram of HAL approach . 17

5.1 The fine default threshold occurs at a point on the PR curve associated

with a higher F-measure score compared to the coarse curves. 52

5.2 Fine has a higher accuracy than coarse at the default threshold for the

Logit classifier. 53

5.3 SVM results for PR curves and F-measure have coarse and fine picking

different parts of the curves for their respective thresholds. This results

in a slight advantage for fine at the default threshold, similar to the

results for the Logit classifier. 53

5.4 SVM accuracy results are similar between coarse and fine. 54

www.manaraa.com

5.5 The PR-AUC curves for rounds with the Logistic Regression classifier

conforms to expectations, with active fine having the best performance,

and Active outperforming Passive for both coarse and fine classifier types. 55

5.6 The ROC-AUC curves for rounds with the Logistic Regression classifier.

The active curves beat out the passive curves for both coarse and fine.

Note that active fine ROC curve doesn’t converge to the active coarse

ROC curve until round 40. This is contrasted to a dominance of the

active fine PR curve after round 10. 56

5.7 The accuracy of the classifiers stays at roughly the same rate throughout

the rounds; this is due to an effective weighting scheme. Both curves

show a dominance of fine over coarse and Active over Passive. 57

5.8 PR curves for each fold at Round 20 . 59

5.9 ROC curves for each fold at Round 20 . 59

5.10 The PR AUC curves for SVM show a slight advantage for active fine,

similar to the Logit results. 60

5.11 The ROC AUC curves for SVM match the Logit results, the convergence

of active fine to active coarse takes slightly longer, round 60 compared

to round 40. 61

5.12 For this curve the fine and coarse grain labels both have a cost of 1. The

purple 1.0 curve shows that if only fine-grained labels are purchased,

the highest performing PR-AUC can be obtained. All FFR ratios end

at the same round since the cost of the fine and coarse instances is the

same the budget. 63

5.13 At fine cost 2, advantage of the higher FFR values decreases but the

ordering of the curves remains unchanged. 64

www.manaraa.com

5.14 At fine cost 4, the highest FFR 1.0 is no longer preferred, the cost is

to high for fine instances PR-AUC utility to overcome the PR-AUC

increase gained by purchasing more coarse instances. 65

5.15 At fine cost 8 the middle FFR values outperform the extreme values for

rounds 0 to 180. 66

5.16 This shows the iterations continuing through round 500, the curves

with the higher fine rates eventually settle to the same end point that

the curves with the high rates of coarse labels purchased achieved at

previous iterations. 67

5.17 The fine cost 8 curves shown expanding the rounds 20-60. If a round

budget of 40 occurs than the recommended FFR would be 0.2. 68

5.18 The fine cost is increased to 16. The cost is to high for the fine label

advantage to offset the decreased number of instances purchased. . . . 69

5.19 BANDIT log fine cost analysis with budget fixed. 70

5.20 BANDIT mixed fine cost plot. 72

5.21 The fine cost 8 curves shown expanding the rounds 20-60. With the

BANDIT approach plotted. At budget iteration 40, BANDIT PR-AUC is

within 0.0007 of the top learner’s PR-AUC. 73

www.manaraa.com

List of Tables

2.1 Example of a confusion matrix conf, with 100 negative and 50 positive

instances in the test set. 8

2.2 Features of the protein dataset along with their respective sources. . . . 11

4.1 This dataset contains 20098 instances total with 449 features each. An

example partitioning is shown, some classes like 1 and 5 contain only

1-2 instances in a given test set. Note there is a heavy class imbalance

with approx. 20 negative instances for each positive instance. 26

4.2 Example of totals for the train and test partitions when the first fold is

held out to be the test set. 26

4.3 Example totals for the train and test set for the subset of data. The

subset of data is used for the majority of the parameter search. 27

4.4 SVM default results without parameter selection or preprocessing.

Where PR curve AUC is (pr), ROC curve AUC is (roc), accuracy is

(acc), F1-measure is (f1). 28

4.5 SVM default results confusion matrix. Where True Negatives is (tn),

False Positives is (fp), False Negatives (fn), True Positives is (tp). 28

4.6 SVM default condensed view of summary performance metrics, each

value is the average of 10 folds. 28

www.manaraa.com

4.7 SVM minimax-scaler results. 30

4.8 SVM norm-scaler results. 30

4.9 SVM std-scaler results. This option is chosen. 30

4.10 Linear kernel results. 30

4.11 Poly degree 3 kernel results. 31

4.12 Poly degree 6 kernel results. 31

4.13 Sigmoid kernel results. 31

4.14 RBF kernel results. This option is chosen. 31

4.15 SVM select percentile, keep 25% of features. 32

4.16 SVM select percentile, keep 50% of features. 32

4.17 SVM select percentile, keep 75% of features. This option is chosen. . . . 32

4.18 Logistic Regression - No scaling. 32

4.19 Logistic Regression standard scaling. 33

4.20 Logistic Regression normalization scaling. 33

4.21 Logistic Regression MinMax scaling. This option is chosen. 33

4.22 Logistic Regression select percentile 25%. 33

4.23 Logistic Regression select percentile 50%. 33

4.24 Logistic Regression select percentile 75%. 34

4.25 Logistic Regression select percentile 100%. This option is chosen. 34

4.26 Logit weight 4.977, cost 1.0 . 35

4.27 Logit weight 4.977, cost 0.1 . 35

4.28 Logit weight 4.977, cost 10.0 . 35

4.29 Logit weight 10.0, cost 1.0 . 35

4.30 Logit weight 10.0, cost 0.1 . 35

4.31 Logit weight 10.0, cost 10.0 . 35

4.32 Logit weight 7.5, cost 1.0 . 36

www.manaraa.com

4.33 Logit weight 7.5, cost 0.1. This option is chosen because it shows the

least advantage for coarse or fine in either PR-AUC or in ROC-AUC. . . 36

4.34 Logit weight 7.5, cost 10.0 . 36

4.35 Logit Class 1 weight ratio 1.0 . 37

4.36 Logit Class 1 weight ratio 0.5 . 37

4.37 Logit Class 1 weight ratio 3.0. This option is chosen. 37

4.38 Logit Class 1 weight ratio 5.0 . 38

4.39 Logit Class 2 weight ratio 1.0. This option is chosen. 38

4.40 Logit Class 2 weight ratio 0.5 . 38

4.41 Logit Class 2 weight ratio 1.5 . 38

4.42 Logit Class 3 weight ratio 1.0. This option is chosen. 39

4.43 Logit Class 3 weight ratio 0.5 . 39

4.44 Logit Class 3 weight ratio 1.5 . 39

4.45 Logit Class 4 weight ratio 1.0 . 39

4.46 Logit Class 4 weight ratio 0.5 . 40

4.47 Logit Class 4 weight ratio 1.5. This option is chosen. 40

4.48 Logit Class 4 weight ratio 2.0 . 40

4.49 Logit Class 5 weight ratio 1.0 . 40

4.50 Logit Class 5 weight ratio 0.5 . 41

4.51 Logit Class 5 weight ratio 1.5 . 41

4.52 Logit Class 5 weight ratio 5.0 . 41

4.53 Logit Class 5 weight ratio 10.0. This option is chosen. 41

4.54 LogitCls5-Wt20 . 41

4.55 Logit Class 6 weight ratio 1.0 . 42

4.56 Logit Class 6 weight ratio 0.5 . 42

4.57 Logit Class 6 weight ratio 2.0. This option is chosen. 42

www.manaraa.com

4.58 Logit Class 6 weight ratio 3.0 . 42

4.59 Logit Class 7 weight ratio 1.0 . 43

4.60 Logit Class 7 weight ratio 0.5 . 43

4.61 Logit Class 7 weight ratio 3.0. This option is chosen. 43

4.62 Logit Class 7 weight ratio 5.0 . 43

4.63 Logit Class 8 weight ratio 1.0. This option is chosen. 44

4.64 Logit Class 8 weight ratio 0.5 . 44

4.65 Logit Class 8 weight ratio 1.5 . 44

4.66 Logit results after fine tuning, effectively had a tolerance of 0.0001 . . . 44

4.67 Logit Tolerance 0.0001, notice that the fine PR and ROC decreased by

0.001, and that the coarse ROC decreased by 0.001 upon rerunning,

there is some statistical variation in these metrics. 45

4.68 Logit Tolerance 0.00001. This option is chosen. 45

4.69 Logit Tolerance 0.000001 . 45

4.70 Logit sample weights, drop intermediate values True. The default

option is chosen. 46

4.71 Logit no sample weights, drop intermediate values True 46

4.72 Logit sample weights, drop intermediate values False 46

4.73 Logit no sample weights, drop intermediate values False 46

4.74 Logit entire dataset, weight 20.887 . 47

4.75 Logit entire dataset, weight 23.0. This option is chosen. 47

4.76 Logit entire dataset, weight 25.0. 47

4.77 SVM Cost 1.0 Gamma 0.003 . 48

4.78 SVM Cost 2.0 Gamma 0.003 . 48

4.79 SVM Cost 0.1 Gamma 0.003 . 49

4.80 SVM Cost 0.05 Gamma 0.003 . 49

www.manaraa.com

4.81 SVM Cost 0.15 Gamma 0.003 . 49

4.82 SVM Cost 0.2 Gamma 0.003 . 49

4.83 SVM Cost 0.15 Gamma 0.002. This option for Cost and Gamma is chosen. 49

4.84 SVM Cost 0.15 Gamma 0.001 . 49

5.1 Logit entire dataset results after parameter tuning 51

5.2 SVM entire dataset results after parameter tuning 51

5.3 Aggregated PR AUC for the protein dataset 71

www.manaraa.com

Chapter 1

Introduction

This study investigates an application of the Support Vector Machine and Logistic

Regression machine learning algorithms to a protein dataset labeled according to

a protein’s location of origin in a cell. The task of classifying a given protein’s

location of origin can be essential in identifying the source of a mutation and

helpful in the treatment of various mitochondrial diseases [3]. The dataset is

labeled according to a hierarchical scheme or labeling tree, at the root level is

whether the protein originates from the mitochondria or not, then the hierarchy

breaks down further into specific target compartments at the leaf nodes. Our

investigation shows that leveraging separate fine-grained classifiers for each of the

target compartments produces a higher performing classifier at the highest level

in the hierarchy.

This work uses an approach within the active machine learning setting. Active

machine learning or active learning, is a case of semi-supervised or conventional

machine learning. In semi-supervised machine learning (ML) some of the data

is labeled, and some of the data is unlabeled. In the context of this work a data

instance is a single protein and its list of defining values or features. A data

www.manaraa.com

instance also has a label which is the value that we want to learn, in our work this

is the protein’s location of origin in the cell. Conventional ML learns a function

between the the features of an instance and the label of an instance. The input to

the function is the vector of features and the output is the label. ML is discussed

more formally in Section 2.1.

We work within the conventional active learning model, where the learner

can query an oracle or supervisor, usually a human that labels the data manually.

Active learning can be used to solicit new instances that can maximally improve

the performance of the learned classifier [4]. This is contrasted to conventional ML

where the learner is passively being given a training set irrespective of how the

new data instances will affect classifier performance [4]. Although the gains seen

by using an active learning approach will be dependent upon the learning model

and the dataset, a survey by Tomanek et al. [5] reports that 91% of researchers who

used active learning in large-scale annotation projects had their expectations fully

or partially met. Furthemore, Dagsputa [6] provided a variety of theoretical upper

and lower bounds for active learning when batches of instances are purchased

at a time and a linear classifier is used, showing that in the worst case active

learning is equivalent to passive supervised learning. See Settles [7] for a more

formal empirical and theoretical analysis of the advantages of active learning.

Active learning usually associates a cost to the labeling effort and has the goal

of generating a best performing classifier for a minimal amount of labeling cost.

Active learning can also learn a best performing classifier for a given purchase

budget. We work with the pool-based active learning model where batches of

instances are purchased at a time using the previous best performing classifier to

determine which instances to purchase for the next batch that will best improve

classifier performance.

www.manaraa.com

This work applies a new approach in the active learning setting, termed active

over-labeling, to the mitochondrial disease protein dataset [1]. The approach uses

a certain proportion of the purchase budget to solicit labels at a finer level of

granularity than the target concept. Purchasing fine-grained labels in each round

of active learning produces a higher performing root-level (coarse) classifier than

purchasing coarse labels alone. Analysis for this dataset is performed showing that

the active approach of selecting the most uncertain labels significantly outperforms

the passive approach of selecting labels at random. The fine-grained labels also

incur a higher cost than coarse-grained labels for this dataset, so multiple cost

ratios are investigated and an optimal fixed fine ratio (FFR) purchasing strategy

is determined for each fine cost. An approach optimally selecting FFR strategies

throughout the rounds using a multi-armed bandit strategy is also applied to the

protein dataset and shown to be robust to variations in labeling cost and budget.

The main contribution of this thesis is applying the multi-armed bandit active

over-labeling approach to the protein dataset and demonstrating that this approach

is robust to both varying costs and budget.

The rest of this thesis is organized as follows. In Chapter 2.1-2.2 we formally

define machine learning and evaluation metrics used throughout this thesis. In

Chapter 2.3 we present the origin of the protein dataset. Chapter 2.4-2.7 details the

active over-labeling approach and theoretical justifications for its success. Chapter

3 presents related work and describes Mo et al.’s experiments using the active

over-labeling approach on other datasets. Chapter 4 describes conventional ML

applied to the protein dataset, which is used in Chapter 5 where experiments

applying the active over-labeling approach to the protein dataset are presented

and discussed.

www.manaraa.com

Chapter 2

Background and Theory

2.1 Machine Learning

Machine learning (ML) algorithms are defined as computer programs that learn

from experience E with respect to some class of tasks T and performance measure P,

if their performance at tasks in T, as measured by P, improves with experience E [4].

In this thesis, the machine learning algorithms that are used include Support Vector

Machines (SVM), and Logistic Regression (Logit). This work uses implementations

by the sci-kit learn python library [8] for both algorithms. The performance

measures include the following: precision, recall, accuracy, confusion matrices,

and F-measure. These are discussed in Section 2.2. The task to be learned is a

function of a protein’s features to a protein’s location of origin in the cell. More

formally, the task of a learner in conventional ML is to learn a target concept or

classifier, given as:

f : X → Y = {0, 1} (2.1)

www.manaraa.com

Where X is the input space and Y is the label output. Our experiment requires

a binary classification task, each algorithm takes a protein instance with a list of

449 features as an input and then outputs a 0 or 1 whether or not the protein

belongs to a class. Both Logit and SVM classifiers have a decision function method

that outputs the predicted confidence score for a given sample, which is the signed

distance of that sample to the learned hyperplane.

The classifier function for Logit is shown in eqn. 2.2, where x is the vector of

features, θ is vector of learned parameters, and the function g(z) is the sigmoid

function [9]:

hθ(x) = g(θ · x)

g(z) =
1

1 + e−z

(2.2)

The θ parameters are solved in order to minimize the sum of square errors

(L2-norm) in the training set, and to regularize the θ parameters [10]. The L2-norm

is a function that assigns a strictly positive size to a given vector, it is a special case

of the Lp-norm function given as:

fL p(x) =
(n

∑
i=1
|xi|p

)1/p

(2.3)

Regularization is a penalty term that prevents overfitting by constraining the

size of the θ coefficients. A cost function is used to solve for θ, this function is

shown in eqn 2.4. The C parameter is the inverse of the regularization strength, a

larger value means a stronger regularization [10]:

min
θ,c

1
2

θTθ + C
i=1

∑
n

log(exp(−yi(XT
i θ + c)) + 1) (2.4)

A SVM constructs a hyperplane or set of hyperplanes in a high-dimensional

www.manaraa.com

or infinite-dimensional space, which is used to output a classification for a given

instance. The goal is to learn a hyperplane that has the largest distance between

training data points of separate classes, which is called the functional margin [10].

In general the larger the functional margin the lower the generalization error of the

classifier. SVMs are a maximum functional margin method that allow the model to

be written as a sum of the influence of a subset of the training instances [11]. This

output is given by kernel functions that are measures of similarity between data

instances. The SVM implementation used solves the eqn. 2.5, where e is a vector of

all ones, C is the penalty parameter of the error term:

min
α

1
2

αTQα− eTα, subject to yTα = 0 where 0 ≤ αi ≤ C, i = 1, ..., n (2.5)

The Q function is defined in eqn. 2.6, where K is the kernel function.

Qij ≡ yiyjK(xi, xj), where K(xi, xj) = φ(xi)
Tφ(xj) (2.6)

The C parameter trades off misclassification of training examples against sim-

plicity of the decision surface [10]. A low C makes the decision surface smooth,

while a high C aims at classifying all the training examples correctly by allowing

the model to select more samples as support vectors [10]. The γ parameter defines

the significance a single training example can have, with low values corresponding

to a single instance having a large significance to the learned hyperplane [10]. γ

can be seen as the inverse of the radius of influence of samples selected by the

model as support vectors.

In this work the following kernel functions were tested [10]:

www.manaraa.com

• Linear:
〈

x, x
′
〉

• Polynomial: (γ
〈

x, x
′
〉
+ r)d, where d is the degree of the polynomial, and r

is a coefficient passed to the solver, default is 0.

• Radial Basis Function (RBF): exp(−γ|x− x
′ |2), where γ is the kernel coeffi-

cient.

• Sigmoid: σ(tanh(γ
〈

x, x
′
〉
+ r)), where r is a coefficient passed to the solver,

default is 0, and σ(x) = 1
1+e−x .

2.2 Evaluating Classifier Performance

A classifier’s performance is primarily evaluated using Precision-Recall (PR) and

Receiver Operator Characteristic (ROC) curves, although accuracy, precision, recall,

confusion matrix and F-measure are also calculated. Accuracy is the total number

of correctly classified instances in the test set divided by the total number of

instances in the test set. The confusion matrix outputs a 2× 2 matrix conf for the

binary classification task. Each cell confrow,col corresponds to one of the following

metrics, values are given for the example confusion matrix shown in Table 2.1:

• True-Negatives (Tn): location conf0,0 = 90, correctly classified negative

instances.

• False-Negatives (Fp): location conf0,1 = 10, incorrectly classified negative

instances.

• False-Positives (Fn): location conf1,0 = 20, incorrectly classified positive

instances.

www.manaraa.com

• True-Positives (Tp): location conf1,1 = 30, correctly classified positive in-

stances.

Table 2.1: Example of a confusion matrix conf, with 100 negative and 50 positive
instances in the test set.

conf (tn/fn) conf (fp/tp)

90 10

20 30

Precision is a measure of result relevancy and is given as:

P =
Tp

Tp + Fp
. (2.7)

Recall is a measure of how many truly relevant results are returned and is

given as:

R =
Tp

Tp + Fn
. (2.8)

The F-measure or F1-measure (F1) is the harmonic mean of precision and recall

and is given as:

F1 = 2 · P · R
P + R

. (2.9)

PR curves are constructed first by outputting the decision function score for

each instance in the test set. Each score defines a threshold for computing precision,

recall and F1 metrics. Precision and Recall are computed for each threshold and

plotted on the PR curve, with recall on the x-axis and precision on the y-axis. ROC

curves also evaluate classifier output quality. ROC curves are constructed similar

to the PR curve except Fp replaces recall on the x-axis and Tp replaces precision on

www.manaraa.com

the y-axis. For both curves, the curve information is summarized in one number,

area under the curve (AUC). Both PR-AUC and ROC-AUC are calculated using

the trapezoidal rule, given as:

k

∑
i=x(1)

(i− (i− 1))
[

f (i) + f (i− 1)
2

]
(2.10)

Where k is the total number of points on the curve, x(i) returns a points x-axis

value, and f (0) = 0. Examples of ROC and PR curves and their respective AUC

values are given in Figure 2.1.

(a) PR curve. (b) ROC curve.

Figure 2.1: Examples of PR and ROC curves with their corresponding AUC values.

Higher values of AUC usually correlate to a better performing the classifier.

AUC is used throughout this work to summarize and compare ROC and PR curves

using a single number.

2.3 Hierarchical Bioinformatics Data Set

Bioinformatics is a field using computer science tools and techniques for solving

problems in molecular biology, ecology, virology, zoology, etc. The focus of

www.manaraa.com

this work is a bioinformatics dataset developed in order to identify the source

of a certain class of mutations causing mitochondrial disease. Mitochondria

are present in every cell of the body, with the exception of red blood cells [3].

Mitochondrial diseases may be caused by mutations in the proteins that reside

within the mitochondria. These mutations that occur in locally transcribed and

translated mitochondrial DNA (mtDNA), or in nuclear DNA (nDNA) whose

protein products are imported into the mitochondria. These nDNA have many

target locations including the mitochondria’s outer or inner membrane, its matrix,

or its ribosomes. Identifying the source of the mutation is an important problem

in the treatment of a mitochondrial disease. It is an essential classification task

to determine wether or not the offending mutation occurs in the mitochondrion

or in an imported protein [3]. The positive dataset is composed of 962 human

mitochondrial proteins from the Mitoproteome dataset [12]. The negative dataset

is composed of 19,136 experimentally validated human proteins from UniProt

[13]. A total of 1099 features were assembled by Kevin Chiang from Dr. Cui’s

bioinformatics lab at University of Nebraska at Lincoln (UNL), these features

are described along with references to their sources in Table 2.2. The features

were reduced and combined into a resulting set of 449 dimensions [3]. This

bioinformatics dataset is used for experimentation throughout this work.

www.manaraa.com

Table 2.2: Features of the protein dataset along with their respective sources.

Type of Prop-
erties

Features (dimension) Sources

General
sequence
features

Amino acid composition (20), sequence
length (1), di-peptides composition (400)

Calculated by Kevin Chiang at
UNL [3]

Normalized Moreau-Broto, autocorrelation
(240), Moran autocorrelation (240), Geary
autocorrelation (240), Sequence order (160),
Pseudo amino acid composition (50)

Profeat [14]

Physico
chemical
properties

Hydrophobicity (21), normalized Van der
Waals volume (21), polarity (21), polarizabil-
ity (21), charge (21), secondary structure (21)
and solvent accessibility (21)

Computed with three descrip-
tors: composition (C), transition
(T), and distribution (D) [15]

Solubility (1), unfold-ability (1), disorder re-
gions (3), global charge (1) and hydrophobil-
ity (1)

PROSO [16], Phobius [17]

Structural
properties

Secondary structural content (4), shape (Ra-
dius Gyration) (1)

SSCP [18]

Domains and
motifs

Signal peptide (1), transmembrane domains
(alpha helix and beta barrel) (5), Glycosyla-
tion (both N-linked and O-linked) (4), Twin-
arginine signal peptides motif (TAT) (1)

SignalP [19], TMB-Hunt [20],
NetOgly [21], TatP [22]

The dataset comprises a classification problem, each protein is labeled according

to where it originates in the cell. At the root is is whether or not the protein resides

within the mitochondria, then there are the sub level labels if the protein has a

separate target compartment specifications. The complete tree along with the

number of instances belonging to the each label is included in Figure 2.2.

www.manaraa.com

Figure 2.2: The protein dataset hierarchy of labels along with the instance count
for each label.

2.4 Coarse-grained vs. Fine-grained Trade Off

In hierarchically labeled datasets, over-labeling refers to learning fine-grained

(non-root) concepts and combining the results to predict the coarse-grained (root)

label [1]. It can be demonstrated through a simple example that for certain datasets,

a fine-grained approach to the root level classifier can achieve higher levels of

precision for the same level of recall. Such a dataset is shown in Figure 2.3 from [1].

The classifiers for this dataset can be thought of as a function of single rectangular

boxes with axis-parallel sides.

The target concept is to learn the circles from the diamonds. If we train a

coarse classifier of circles verses diamonds and desire a high amount of recall or

a large amount of circles to be correctly classified, a large amount of diamonds

will necessarily be returned. In order for the coarse-grained classifier to return

all of the positive circle instances the it must encompass the entire dataset and

www.manaraa.com

incidentally return all of the negative diamond instances as positive. Alternatively,

since the circles also belong to the fine-grained classes of their respective color and

shading, 4 separate fine-grained classifiers can be trained and then a union of the

fine-grained classifiers can be used to predict either circle or diamond for a data

instance. Each fine-grained classifier is trained one verses everything else, and

if any of the fine-grained classifiers output that the instance is a positive for that

sub-class we predict that the instance is a circle. This union of the fine-grained

classifiers can learn the entire circle space without encompassing any false positive

diamonds.

A fine-grained approach is preferable for the simple dataset pictured. The

fine-grained classification approach for a root level classifier will achieve higher

levels of precision for the same level of recall when applied to the protein dataset.

In the simple example, in order for the coarse-grained learner to have high recall,

precision must be sacrificed for a large amount of false positives returned. By

combining fine-grained classifiers, the same level of recall can be achieved with

a higher level of precision because none of the false positive diamonds will be

returned.

www.manaraa.com

Figure 2.3: Demonstration of a dataset that would benefit from multiple fine-
grained learners for each circle type, from [1].

2.5 Active Over-Labeling

In conventional active learning, as previously defined in Section 1, the initial state

is a pool of unlabeled examples U ⊂ X . At each iteration, an oracle is queried

at some cost for the label of an instance u ∈ U, then L is training on the labeled

examples (x, y), with the goal of outputting a relatively high performing classifier

for a low cost.

Since our dataset is oracle labeled, this work extends the conventional active

learning approach to solicit labels at finer levels of the hierarchy for a specified

cost. The oracle in this setting returns a vector of labels, corresponding to the path

starting at the root of the hierarchy tree or labeling tree. An example labeling tree

for the Reuters Corpus Volume I (RCV1) dataset is shown in is shown in Figure 2.4.

This dataset is used in text categorization research and the dataset is comprised of

human labeled articles of text [2]. An instance in this dataset could be labeled as

〈Location,Building,Museum〉, 〈Location,Attraction,Museum〉, 〈Location,Lake,X〉,

www.manaraa.com

or 〈X, X, X〉, where an X indicates that no value at that level applies [1].

Figure 2.4: A labeling tree based on the text categorization dataset RCV1 [2].

In the active over-labeling setting, each instance U is initially labeled with the

vector 〈?,?,. . .,?〉, where ? denotes an unspecified label that is yet to be purchased.

A vector of labels is denoted as 〈`1, `i, . . . , `k〉. A label `i is the instance’s label at

the ith level of the tree. Furthermore, if j > i, and `i = X or no value at that level,

then `j = X as well, since no other label farther than `i from the root can be defined.

Thus we let `i denote the largest value for a given instance such that `i 6= X. The

values `i, . . . , `1 form a path from a leaf to the root of the tree. For a given instance,

a value for `i is purchased at a cost ci ≥ ck ≥ 0 for all i > k. A purchase of `i

automatically yields the values of `1 through `i−1. For example a purchase of

`3 for an instance in the RCV1 dataset could yield 〈Location,Building,Museum〉,

〈Location,Attraction,Museum〉, 〈Location,Lake,X〉, or 〈X, X, X〉. It is assumed

that all labels in the same level are distinct, e.g., Museum under Attraction is

distinguishable from Museum under Building. A purchase of `2 for an instance

www.manaraa.com

in the RCV1 dataset could yield 〈Location,Building,?〉, 〈Location,Attraction,?〉,

〈Location,Lake,X〉, or 〈X, X, X〉. Note that once an X or a leaf is known for the

instance, the rest of the vector labels farther from the root are known to be X.

The labeling relationship for an instance for a given class is defined as a function

LabelMap(E′, m, i) where E′ is the label vector, m is the class for which the label is

requested, and i is the level in the label hierarchy associated with that class.

2.6 Hierarchical Active Learning

The Hierarchical Active Learning algorithm (HAL) applies the active over-labeling

approach and is shown diagrammatically in Figure 2.5. A high level description of

the HAL algorithm is given in Algorithm 1. Multiple fine-grained classifiers are

trained at each level of the hierarchy of the dataset. Every level i, and every class

j has a corresponding binary fine-grained classifier Ci,j. The machine learning

algorithm used in Ci,j is dependent upon the dataset, this work investigates using

SVM and Logit on the protein dataset [3]. The algorithm progresses by purchasing

a batch of labels, where the proportion of the total budget b used for a given level

i is denoted by a vector p. This step Purchase(b · pi, i, Ci,j(x)), returns b · pi worth

of label vectors defined up to level i of the labeling tree. The classifier Ci,j is used

in the purchase function to order the unlabeled instances by the uncertainty, so

the instances with the highest uncertainty have their labels purchased in order to

maximize the ensemble classifier performance.

www.manaraa.com

Figure 2.5: Diagram of HAL approach

The classifiers Ci,j are combined into an ensemble classifier for the coarse-

grained level-1 concept. The level-1 concept C1,∗ is a disjunction over the concepts

j at any given level i, the equation to combine fine-grained classifiers is given in as:

Ci,∗(x) = max
s≥i,j

Cs,j(x) (2.11)

Furthermore the uncertainty at level i is measured with respect to the ensemble

classifier Ci,∗. The uncertainty ui(x) of the label for example x for level i is defined

as:

ui(x) =
1
2
−
∣∣∣∣Ci,∗ −

1
2

∣∣∣∣ . (2.12)

www.manaraa.com

Algorithm 1 Method hierarchical active learning for a fixed fine-grained ratio
(FFR) [1]. See text for Purchase and LabelMap.

function Hal(Unlabeled examples U, labeling tree T, machine learner L, budget B,
per-iteration budget b, purchase proportions p = (p1, . . . , pk))

Ei,j ← ∅ . binary-labeled train set for level i, label j
Initialize Ci,j for all i, j
while B > b do

B← B− b
for all Level i ∈ T do

E′ ← Purchase(b pi, i, Ci,j)
for all Level m ≤ i do

for all Class j in Level m do
Em,j ∪ LabelMap(E′, m, j)

end for
end for

end for
for all Level i ∈ T do

for all Class j in Level i do
Ci,j ← Train L on Ei,j

end for
end for

end while
return Ensemble classifier

end function

2.7 Dynamically Adapting Purchase Proportions

HAL is a fixed-fine ratio methodology. It takes as input a purchase proportion

vector p, which specifies how much of the budget should be used to purchase at a

given level in the hierarchy. The following strategy is developed to dynamically

adapt to purchase proportions [1]. The task of choosing the level of granularity

to purchase labels is framed as a multi-armed bandit problem, and solved using

Auer et al.’s ε-greedy bandit algorithm (BANDIT) [23], given as:

• Loop for each n = 1, 2, . . .

• At each iteration n solve, εn = min
{

1, cK
d2n

}
.

www.manaraa.com

– Let in be the machine with the highest current average reward.

– With probability 1− εn play in and with probability εn play a random

arm.

– Note, in our implementation we let c, d = 1.

For each iteration of purchase, BANDIT chooses a purchasing strategy based

on the running average of the observed reward associated with each strategy. The

reward or gain for each round is defined in terms of observed model change and

the equation is given below, where n is the round number, X is the remaining

unlabeled examples, and f j(xi) is HAL’s output for the input xi after the nth round

of batch purchases.

g(n) =
1
‖X‖ ∑

xi∈X
log (| f j−1(xi)− f j(xi)|) (2.13)

The gain equation shown in eqn. 2.13 is modified to further to prevent BAN-

DIT from thrashing between purchasing strategy arms, p and p′. The observed

thrashing is resultant from the running average of the g(n) for every strategy

slowly decreasing as more instances are obtained. The effect is that the unmodified

BANDIT disproportionately favors arms that it has not played recently and have

not been recently updated. Thus the following modified BANDIT reward equation

is used, it selects between two arms: (1) use the strategy as the previous round,

(2) switch strategies. The reward from the (1) is always zero. The reward for (2)

is given in eqn. 2.14, and is dependent upon the difference in the gain before

and after switching. The modified BANDIT reward equation prevents thrashing

www.manaraa.com

between arms and solves for the true optimal purchasing strategy.

r(n) =

−g(n)/|g(n)| if p→ p′

g(n)/|g(n)| if p′ → p

0 if p→ p or p′ → p′

(2.14)

Pseudocode for the BANDIT algorithm is given in Algorithm 2. The Algorithm 2

details how BANDIT it is used to generate purchase proportions dynamically for

HAL.

Algorithm 2 BANDIT approach that dynamically selects purchase proportions to
use for HAL [1]. See text for ε-greedy bandit algorithm, HAL, Gain, and Reward.

function BANDIT(Unlabeled examples U, labeling tree T, budget B, per-iteration budget
b, purchase proportions p = (p1, . . . , pk), Arms={armStay, armSwitch}, HAL)

Run HAL for a 1 iteration, randomly select Arms and pi
while B > b do

Set round number to j
Run HAL for current round with previously determined pi
Get U for the current round.
Get HAL’s combined classifier from the previous round, f j−1
Get HAL’s combined classifier from the previous round, f j
Calculate gj = Gain(f j−1, f j, U)
Calculate the rj = Reward(gi) for the switch arm and for the stay arm.
Calculate the average round rewards for each arm, ravg = AVG(r)
Run ε-greedy bandit(ravg, p) to select arm to use for next round
Use selected arm to reset pi for next round

end while
end function

www.manaraa.com

Chapter 3

Related Work

3.1 Previous work in Active Learning

The experiments and methods described in this work demonstrate how leveraging

fine-grained label information can improve the accuracy of a coarse-grained (root-

level) classifier, and investigate active learning in a hierarchical setting where label

acquisition cost can vary [1]. This thesis mirrors the first application of these

methods done by Mo et al. [1].

Techniques have been investigated using hierarchies of labels to improve a fine-

grained classifier, by backing off to coarse levels of the hierarchy when fine-grained

data are sparse. Such techniques have been applied to text classification [24] and

rich media indexing [25]. This work presents techniques that work in the opposite

direction, utilizing selectively acquired fine-grained labels to improve classification

over coarse categories.

Previous work in active learning focused on “pool-based” active learning, where

a learner selects instances from a pool of unlabeled data to be labeled by an oracle.

Active learning can reduce the expense of purchasing labels by only requesting the

www.manaraa.com

most informative labels [26]. Labels that have the highest uncertainty are deemed

most informative, uncertainty can be measured in terms of the confidence of output

values [27], uncertainty in the parameters of probabilistic models [28], or the size

of the model’s decision boundary [29]. This work uses uncertainty measured in

confidence of output values and size of the model’s decision boundary.

Previous work in active learning has been shown to reduce sampling bias by

utilizing the hierarchical structure of input features [30, 31]. This work focuses on

active learning over hierarchically structured output labels [1].

3.2 Application to Dispatch Dataset

The analysis of the protein data set presented in this thesis, largely follows Mo et

al.’s [1] experiments on the Reuters Corpus Volume I (RCV1) text categorization

dataset shown in Section 2.5. HAL is applied to a Dispatch dataset by Mo et al.

[1]. This dataset contains 375,026 manually labeled hierarchical names across 1,384

newspaper articles [2]. This is a clear example of when fine-grained labels have a

higher cost. It is relatively easy for a person to manually determine the coarse level

question of whether or not the article pertains to an organization, and relatively

difficult to determine the fine level question of whether or not the article pertains

to a railroad or a zoo.

The first analysis step is to confirm that fine-grained classifiers outperform

coarse-grained classifier evaluations and active learning outperforms passive learn-

ing. Passive learning is randomly selecting new data instances to be labeled out

of the set of unlabeled instances. The advantage for active learning over passive

and fine-grained over coarse-grained is shown for the dataset [1]. Furthermore,

the fine-grained classifier is shown to have a higher level of precision compared

www.manaraa.com

to the coarse-grained classifier when both classifiers output the roughly the same

recall [1]. These evaluation metrics are discussed further in Section 2.2.

The next analysis step is to test an implementation of an algorithm for active

over-labeling called HAL with various p proportion ratios. The proportion for

each fine class used by that rounds purchase-budget remains fixed throughout

the rounds of the experiment, thus each experiment has a fixed fine ratio (FFR).

The experiments by Mo et al. [1] demonstrate that HAL can be used to determine

an optimal FFR strategy for the RCV1 dataset at various fine costs and budgets.

Furthermore, Mo et al. elicits and performs a modified active over-labeling approach

termed BANDIT on the RCV1 dataset. The BANDIT approach is determined to

be robust to differences in label cost and label budget. Both the HAL and the

BANDIT methodologies are discussed in detail in Sections 2.6 - 2.7.

www.manaraa.com

Chapter 4

Experimental Setup

This chapter details the experimental settings for the coarse-grained and fine-

grained classifiers. First we define our training and testing strategy, using a subset

of the data for parameter tuning. Then we progress to running SVM with the

default parameters, then vary scaling methods, kernels and feature selection for

SVM. At this point the SVM is not showing an advantage for the fine-grained

classifier, we switch to a Logit classifier which learns a less complex function than

the SVM. The same variations in scaling and feature selection used in the SVM

experiments are performed with a Logit classifier.

The tuning of the Logit cost parameter is determined to have a dependence

on the class weighting scheme. The Logit cost and class weight are tuned in

conjunction with one another, a unique cost and class weight pair represents a

distinct parameter choice. Furthermore, the class weight parameter is tuned for the

specific fine-grained classifiers. A Logit tolerance parameter is tuned after the class

weights. Options with generating the PR and ROC curves are explored, including

varying the sample weight and dropping intermediate values in the ROC curve.

A distinct advantage for the fine-grained union classifier over the coarse-grained

www.manaraa.com

classifier is demonstrated for Logit. Finally, the class weight parameter is once

again tuned with the entire dataset partitioned and the experimental setup for

the Logit classifier is complete. After the Logit classifier is tuned, then the class

weights are applied to the SVM classifier. The SVM cost and gamma parameters

are varied in conjunction with one another and a fine-grained classifier advantage

over coarse-grained is discovered for the SVM.

4.1 Training and Testing Coarse-Grain and

Fine-Grain Classifiers

The bioinformatics dataset consists of 9 classes as shown in Figure 2.2. The coarse-

level concept is whether or not the protein resides within the mitochondria. The

negative case of not residing within the mitochondria is class 0. The positive case of

residing within the mitochondria corresponds to any of the 8 target compartment

classes, numbered 1 through 8. Since the negative case has no fine-grained labels,

the fine-grained classifier is comprised of separate classifiers for each of the fine-

grained labels. The 8 fine-grained classifiers are trained such that only the instances

of the class corresponding to that classifier’s target compartment are marked as

positive, all the others are treated as negative. The coarse-level classifier treats all

fine-grained target compartment instances as members of a single positive class.

For all classifiers the non mitochondrion instances are treated as negative or 0

labeled. The totals for each class type is shown in Table 4.1a. Throughout this

experiment a 10 folds cross validation strategy is used, an example partitioning in

shown in Table 4.1b.

www.manaraa.com

Table 4.1: This dataset contains 20098 instances total with 449 features each. An
example partitioning is shown, some classes like 1 and 5 contain only 1-2 instances
in a given test set. Note there is a heavy class imbalance with approx. 20 negative
instances for each positive instance.

Classes Count

0 19136

1 13

2 185

3 324

4 190

5 11

6 104

7 59

8 76

Tot All 20098

Tot Coarse 19136

Tot Fine 962

Features 449

(a) Classes

Folds All 0 1 2 3 4 5 6 7 8

1 2010 1914 1 19 32 19 1 11 6 7

2 2010 1914 1 19 32 19 1 11 6 7

3 2010 1914 1 19 32 19 1 11 5 8

4 2010 1914 1 19 32 19 1 10 6 8

5 2010 1914 1 18 33 19 1 10 6 8

6 2010 1914 1 18 33 19 1 10 6 8

7 2010 1913 2 18 33 19 1 10 6 8

8 2010 1913 2 18 33 19 1 10 6 8

9 2009 1913 2 18 32 19 2 10 6 7

10 2009 1913 1 19 32 19 1 11 6 7

Total 20098 19136 13 185 324 190 11 104 59 76

(b) Folds

Each partition contains a representative portion of each class, the instances are

randomly distributed between partitions. The train set is composed of joining 9 of

the partitions together holding 1 fold out for the test set. An example of the totals

for a train and test set is shown on Table 4.2.

Table 4.2: Example of totals for the train and test partitions when the first fold is
held out to be the test set.

Train All 0 1 2 3 4 5 6 7 8

Total 18088 17222 12 166 292 171 10 93 53 69

Test All 0 1 2 3 4 5 6 7 8

Total 2010 1914 1 19 32 19 1 11 6 7

Because the experiment will involve running multiple rounds iteratively in-

creasing the number of instances on which the classifiers are trained and tested, a

www.manaraa.com

subset was used to tune the parameters of the classifiers. This allowed variations

of the classifier parameters to be run rapidly and for the class weight parameter

to be tuned for various round sizes. The reduced subset contains a randomly

chosen group of approximately 1/5 of the negatives. The class totals and example

partitioning for the reduced subset is shown in Table 4.3. The total number of

negative instances in the subset partitioning is 3827 down from 19136. The total

number of positive instances in the subset partitioning stays the same and is 962.

After tuning parameters on the subset of data, parameter values are held fixed and

experiments are re-run on a new partitioning containing the entire dataset.

Table 4.3: Example totals for the train and test set for the subset of data. The subset
of data is used for the majority of the parameter search.

Train All 0 1 2 3 4 5 6 7 8

Total 4310 3444 12 166 292 171 10 93 53 69

Test All 0 1 2 3 4 5 6 7 8

Total 479 383 1 19 32 19 1 11 6 7

Throughout this project the python library sci-kit learn is used for the imple-

mentation of the classification, preprocessing, and evaluation algorithms [10]. The

Support Vector Machine (SVM) supervised learning algorithm is used on the un-

scaled subset of the data to obtain the base results shown in Table 4.4. The coarse

and the fine algorithm performance is shown for each of the 10 folds along with the

average performance across the 10 folds. Also the receiver operator characteristic

and precision recall curves are calculated with fine instances weighted according

to the number of of instances in the test set divided by the number of positive

instances in the test set which is a value of 4.99 for the data subset.

www.manaraa.com

Table 4.4: SVM default results without parameter selection or preprocessing. Where
PR curve AUC is (pr), ROC curve AUC is (roc), accuracy is (acc), F1-measure is
(f1).

coarse-pr fine-pr coarse-roc fine-roc coarse-acc fine-acc coarse-f1 fine-f1

0.807 0.796 0.779 0.768 0.816 0.802 0.214 0.021

0.848 0.822 0.828 0.790 0.825 0.804 0.263 0.041

0.846 0.821 0.810 0.765 0.818 0.802 0.243 0.021

0.860 0.832 0.826 0.775 0.831 0.802 0.319 0.021

0.859 0.829 0.828 0.783 0.833 0.804 0.298 0.041

0.796 0.763 0.748 0.715 0.816 0.806 0.214 0.061

0.838 0.825 0.797 0.792 0.818 0.800 0.243 0.020

0.836 0.816 0.803 0.770 0.823 0.800 0.309 0.020

0.863 0.845 0.833 0.805 0.829 0.797 0.305 0.000

0.844 0.806 0.806 0.758 0.836 0.807 0.339 0.061

avg 0.840 avg 0.815 avg 0.806 avg 0.772 avg 0.825 avg 0.802 avg 0.275 avg 0.031

Table 4.5: SVM default results confusion matrix. Where True Negatives is (tn),
False Positives is (fp), False Negatives (fn), True Positives is (tp).

coarse-tn fine-tn coarse-fp fine-fp coarse-fn fine-fn coarse-tp fine-tp

379 383 4 0 84 95 12 1

380 383 3 0 81 94 15 2

378 383 5 0 82 95 14 1

379 383 4 0 77 95 19 1

382 383 1 0 79 94 17 2

379 383 4 0 84 93 12 3

378 382 5 1 82 95 14 1

375 382 7 0 78 96 19 1

379 382 3 0 79 97 18 0

379 382 3 0 75 92 20 3

avg 378.8 avg 382.6 avg 3.9 avg 0.1 avg 80.1 avg 94.6 avg 16.0 avg 1.5

Table 4.6: SVM default condensed view of summary performance metrics, each
value is the average of 10 folds.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.840 0.806 0.825 0.275 (378.8 / 80.1) (3.9 / 16.0)
fine 0.815 0.772 0.802 0.031 (382.6 / 94.6) (0.1 / 1.5)

www.manaraa.com

The primary metric used to make decisions between alternative parameter

choices is the PR-AUC and ROC-AUC. The F-measure and accuracy metrics can be

shown to be correlated to a chosen point on the ROC or PR curves. As shown in

Figure 5.2, each point on the ROC curve has an associated chosen accuracy point,

both the coarse and fine classifiers have similar sets of accuracy and F-measure

points. The chosen threshold used to output the accuracy, F-measure and confusion

matrices varies between the coarse and fine classifier, so at a first glance it appears

as if fine out performs coarse in these metrics but an alternative threshold could

be selected for the coarse classifier to obtain metrics matching the fine output.

Alternatively, the PR-AUC and ROC-AUC compare the correctness of the entire

ranking of the instances in the test set by the classifier, and thus eliminate the need

to consider the dynamic tuning of the threshold used by the classifier to output a

given confusion matrix, accuracy, and F-measure score. In general, as parameter

selection in Sections 4.2-4.12 is elicited the choices from previous sections are used

in any sections that follow.

4.2 Varying SVM Scaling Methods

Different scaling methods are used to preprocess the data [10]. The standard

scaling (std-scaler) strategy centers all features around zero with variance in

the same order, i.e., it outputs the features with a mean of zero and a unit

variance. The minimum maximum scaling (minimax-scaler) strategy scales features

between a minimum and maximum value, which is 0 and 1. The normalization

scaling (norm-scaler) strategy scales individual samples to have a unit norm. Each

preprocessing strategy is applied on the entire dataset before training and testing

is performed. Preprocessing is performed with the default kernel option which is

www.manaraa.com

Radial Basis Function (RBF). The SVM std-scaler method is discovered to have the

best performance.

Table 4.7: SVM minimax-scaler results.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.881 0.855 0.799 0.000 (382.7 / 96.1) (0.0 / 0.0)
fine 0.840 0.810 0.799 0.000 (382.7 / 96.1) (0.0 / 0.0)

Table 4.8: SVM norm-scaler results.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.801 0.791 0.799 0.000 (382.7 / 96.1) (0.0 / 0.0)
fine 0.636 0.615 0.799 0.000 (382.7 / 96.1) (0.0 / 0.0)

Table 4.9: SVM std-scaler results. This option is chosen.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.912 0.882 0.881 0.631 (372.7 / 47.1) (10.0 / 49.0)
fine 0.879 0.848 0.809 0.094 (382.7 / 91.3) (0.0 / 4.8)

4.3 Varying SVM Kernels

Different kernel functions were used in the SVM classifier including: Radial Basis

Function (RBF), Polynomial Degree 3 and 6 (Poly), Linear, and Sigmoid [10]. The

chosen preprocessing strategy of std-scaler is used for these results. The RBF

kernel is discovered to have the best performance.

Table 4.10: Linear kernel results.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.867 0.841 0.853 0.599 (355.5 / 43.4) (27.2 / 52.7)
fine 0.816 0.789 0.828 0.523 (351.1 / 50.8) (31.6 / 45.3)

www.manaraa.com

Table 4.11: Poly degree 3 kernel results.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.816 0.817 0.807 0.169 (376.9 / 86.7) (5.8 / 9.4)
fine 0.755 0.743 0.801 0.063 (380.3 / 92.9) (2.3 / 3.2)

Table 4.12: Poly degree 6 kernel results.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.659 0.637 0.797 0.037 (379.5 / 94.2) (3.2 / 1.9)
fine 0.624 0.584 0.794 0.020 (379.0 / 95.1) (3.7 / 1.0)

Table 4.13: Sigmoid kernel results.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.703 0.693 0.773 0.405 (333.0 / 59.0) (49.7 / 37.1)
fine 0.653 0.622 0.789 0.127 (370.3 / 88.7) (12.4 / 7.4)

Table 4.14: RBF kernel results. This option is chosen.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.912 0.882 0.881 0.630 (372.6 / 47.1) (10.1 / 49.0)
fine 0.879 0.848 0.809 0.094 (382.7 / 91.3) (0.0 / 4.8)

4.4 Varying SVM Feature Selection

We tried different feature selection percentages. The Select Percentile library was

used from sci-kit learn [10]. This is a univariate feature selection strategy that

ranks the features usability for classification according to a statistical measure,

then keeps a certain percentage of the features. The 100% of features example is

simply the result from the previous section. The 75% feature selection strategy is

discovered to have the best performance. Note that leveraging the fine-grained

www.manaraa.com

labels did not improve classifier performance relative to the coarse classifier. An

alternative classifier strategy Logistic Regression (Logit) is investigated, starting in

the following Section 4.5.

Table 4.15: SVM select percentile, keep 25% of features.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.907 0.875 0.877 0.623 (370.7 / 47.1) (12.0 / 49.0)
fine 0.854 0.823 0.806 0.068 (382.7 / 92.7) (0.0 / 3.4)

Table 4.16: SVM select percentile, keep 50% of features.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.913 0.885 0.879 0.632 (371.3 / 46.4) (11.4 / 49.7)
fine 0.874 0.842 0.810 0.097 (382.7 / 91.2) (0.0 / 4.9)

Table 4.17: SVM select percentile, keep 75% of features. This option is chosen.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.913 0.883 0.878 0.622 (372.1 / 47.9) (10.6 / 48.2)
fine 0.880 0.848 0.809 0.089 (382.7 / 91.6) (0.0 / 4.5)

4.5 Varying Logistic Regression Scaling

Testing out the same options for preprocessing scaling that were varied for SVM.

The MinMax scaling option is discovered to have the best performance.

Table 4.18: Logistic Regression - No scaling.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.887 0.862 0.867 0.615 (364.1 / 45.0) (18.6 / 51.1)
fine 0.854 0.837 0.833 0.395 (372.8 / 69.9) (9.9 / 26.2)

www.manaraa.com

Table 4.19: Logistic Regression standard scaling.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.864 0.849 0.846 0.583 (353.8 / 44.8) (28.7 / 51.3)
fine 0.833 0.816 0.831 0.471 (362.0 / 60.2) (20.5 / 36.0)

Table 4.20: Logistic Regression normalization scaling.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.790 0.761 0.799 0.000 (382.7 / 96.1) (0.0 / 0.0)
fine 0.767 0.735 0.799 0.000 (382.7 / 96.1) (0.0 / 0.0)

Table 4.21: Logistic Regression MinMax scaling. This option is chosen.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.891 0.867 0.864 0.581 (368.6 / 50.9) (14.1 / 45.2)
fine 0.888 0.862 0.812 0.130 (382.1 / 89.3) (0.6 / 6.8)

4.6 Varying Logistic Regression Feature Selection

Tested out the same options for feature selection that were varied for SVM. The

100% feature selection strategy is discovered to have the best performance.

Table 4.22: Logistic Regression select percentile 25%.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.872 0.848 0.849 0.497 (370.8 / 60.3) (11.9 / 35.8)
fine 0.869 0.845 0.804 0.052 (382.2 / 93.5) (0.5 / 2.6)

Table 4.23: Logistic Regression select percentile 50%.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.875 0.849 0.849 0.497 (370.8 / 60.3) (11.9 / 35.8)
fine 0.872 0.846 0.803 0.050 (382.2 / 93.6) (0.5 / 2.5)

www.manaraa.com

Table 4.24: Logistic Regression select percentile 75%.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.871 0.847 0.848 0.493 (370.6 / 60.6) (12.1 / 35.5)
fine 0.869 0.845 0.803 0.048 (382.0 / 93.7) (0.7 / 2.4)

Table 4.25: Logistic Regression select percentile 100%. This option is chosen.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.891 0.867 0.864 0.581 (368.6 / 50.9) (14.1 / 45.2)
fine 0.888 0.862 0.812 0.130 (382.1 / 89.3) (0.6 / 6.8)

4.7 Varying Logistic Regression Positive Class

Weight and Cost

Since there is a class imbalance in the dataset (see Table 4.1a), class weight and cost

parameter pairs are varied together, each unique pairing is a distinct option. The

cost default value is 1.0, and the class weight default value is 1.0. The original

value selected for weighting the fine training instance is the number of instances in

the train set divided by the number of positive instances; this is 4.977. The negative

instance train weight is always 1.0. The fine weight of 7.5 and Logit cost parameter

of 0.1 is discovered to have the most desirable performance. This option is chosen

because it shows the least advantage for coarse or fine in either PR-AUC or in

ROC-AUC, the difference in PR-AUC is 0.001 and the difference in ROC-AUC is

0.004. Note the Table 4.27 Logit weight 4.977, cost 0.1 has a difference of 0.0 in

PR-AUC and a difference of 0.005 in ROC-AUC, a slight imbalance in PR-AUC

was favored over an increased imbalance in ROC-AUC.

www.manaraa.com

Table 4.26: Logit weight 4.977, cost 1.0

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.886 0.868 0.787 0.606 (298.7 / 17.9) (84.0 / 78.2)
fine 0.885 0.862 0.857 0.587 (361.7 / 47.3) (21.0 / 48.8)

Table 4.27: Logit weight 4.977, cost 0.1

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.880 0.861 0.755 0.579 (280.7 / 15.4) (102.0 / 80.7)
fine 0.880 0.856 0.851 0.483 (374.2 / 62.7) (8.5 / 33.4)

Table 4.28: Logit weight 4.977, cost 10.0

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.876 0.855 0.793 0.603 (304.6 / 21.1) (78.1 / 75.0)
fine 0.866 0.842 0.835 0.583 (344.8 / 40.9) (37.9 / 55.2)

Table 4.29: Logit weight 10.0, cost 1.0

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.883 0.865 0.690 0.536 (245.4 / 10.9) (137.3 / 85.2)
fine 0.880 0.859 0.822 0.620 (324.2 / 26.7) (58.5 / 69.4)

Table 4.30: Logit weight 10.0, cost 0.1

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.879 0.863 0.609 0.486 (203.6 / 7.9) (179.1 / 88.2)
fine 0.881 0.859 0.834 0.621 (334.5 / 31.1) (48.2 / 65.0)

Table 4.31: Logit weight 10.0, cost 10.0

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.871 0.851 0.723 0.554 (264.1 / 13.9) (118.6 / 82.2)
fine 0.861 0.837 0.792 0.585 (309.3 / 26.2) (73.4 / 69.9)

www.manaraa.com

Table 4.32: Logit weight 7.5, cost 1.0

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.884 0.867 0.734 0.566 (268.8 / 13.5) (113.9 / 82.6)
fine 0.882 0.861 0.846 0.624 (343.4 / 34.6) (39.3 / 61.5)

Table 4.33: Logit weight 7.5, cost 0.1. This option is chosen because it shows the
least advantage for coarse or fine in either PR-AUC or in ROC-AUC.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.880 0.862 0.668 0.517 (234.8 / 11.1) (147.9 / 85.0)
fine 0.881 0.858 0.859 0.613 (357.3 / 42.3) (25.4 / 53.8)

Table 4.34: Logit weight 7.5, cost 10.0

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.873 0.852 0.757 0.578 (283.2 / 16.7) (99.5 / 79.4)
fine 0.863 0.839 0.810 0.588 (323.3 / 31.4) (59.4 / 64.7)

4.8 Varying Logistic Regression Fine Class Weights

The class weight of 7.5 is determined in Section 4.7, it is used for both fine and

coarse classifiers. The weight for each of the separate fine classes is tuned by

multiplying, the class weight of 7.5 by a fixed ratio. A weight ratio of 1.0 would

output a fine class weight of 7.5. A weight ratio of 0.5 would output a fine class

weight of 3.75. Subsections showing the tuning results for each of the 8 fine-grained

classes follow in Sections 4.8.1-4.8.8. The confusion matrices and output metrics for

the individual fine class are shown in order to demonstrate how well the classifier

is learning that fine-grained class. The results for the fine-grained classifier as

a whole are shown on the top row, this is the same result display as shown in

previous sections. The corresponding metrics for the specific one versus rest

www.manaraa.com

fine-grained classifier on the training set is shown in the middle row, and metrics

for that classifier on the test set is shown on the bottom row. It is interesting to

note that the fine-grained classifier does not perfectly learn the training set and

the Logit theta parameters are using an effective regularization strategy. Although

the training set metrics are displayed, only the test set metrics are used to evaluate

parameter tuning decisions. In all cases, metrics are the average of 10 folds. The

coarse classifier output is not shown as it will not vary or be dependent upon the

fine class weight tuning.

4.8.1 Tune Fine Class 1 Weights

The fine class 1 weight ratio of 3.0 is discovered to have the best performance.

Table 4.35: Logit Class 1 weight ratio 1.0

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.881 0.858 0.859 0.613 (357.3 / 42.3) (25.4 / 53.8)
trainCls-1 0.995 0.999 0.998 0.477 (4297.7 / 7.7) (0.8 / 4.0)
testCls-1 0.722 0.996 0.997 0.100 (477.4 / 1.2) (0.1 / 0.1)

Table 4.36: Logit Class 1 weight ratio 0.5

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.880 0.856 0.859 0.613 (357.4 / 42.3) (25.3 / 53.8)
trainCls-1 0.994 0.998 0.997 0.142 (4298.5 / 10.8) (0.0 / 0.9)
testCls-1 0.696 0.995 0.997 0.000 (477.5 / 1.3) (0.0 / 0.0)

Table 4.37: Logit Class 1 weight ratio 3.0. This option is chosen.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.882 0.860 0.859 0.617 (357.1 / 41.7) (25.6 / 54.4)
trainCls-1 0.995 1.000 0.999 0.854 (4295.8 / 1.0) (2.7 / 10.7)
testCls-1 0.722 0.997 0.998 0.400 (477.1 / 0.7) (0.4 / 0.6)

www.manaraa.com

Table 4.38: Logit Class 1 weight ratio 5.0

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.881 0.859 0.860 0.618 (357.0 / 41.5) (25.7 / 54.6)
trainCls-1 0.995 1.000 0.999 0.850 (4294.3 / 0.0) (4.2 / 11.7)
testCls-1 0.722 0.997 0.998 0.513 (476.9 / 0.5) (0.6 / 0.8)

4.8.2 Tune Fine Class 2 Weights

The fine class 2 weight ratio of 1.0 is discovered to have the best performance.

Table 4.39: Logit Class 2 weight ratio 1.0. This option is chosen.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.882 0.860 0.859 0.617 (357.1 / 41.7) (25.6 / 54.4)
trainCls-2 0.800 0.804 0.952 0.200 (4076.9 / 140.5) (66.8 / 26.0)
testCls-2 0.655 0.689 0.944 0.081 (450.7 / 17.3) (9.6 / 1.2)

Table 4.40: Logit Class 2 weight ratio 0.5

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.882 0.857 0.862 0.618 (359.1 / 42.5) (23.6 / 53.6)
trainCls-2 0.785 0.787 0.961 0.052 (4139.4 / 161.9) (4.3 / 4.6)
testCls-2 0.656 0.694 0.960 0.009 (459.4 / 18.4) (0.9 / 0.1)

Table 4.41: Logit Class 2 weight ratio 1.5

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.877 0.857 0.855 0.620 (352.5 / 39.3) (30.2 / 56.8)
trainCls-2 0.806 0.814 0.924 0.263 (3924.1 / 108.1) (219.6 / 58.4)
testCls-2 0.652 0.684 0.914 0.123 (434.8 / 15.6) (25.5 / 2.9)

4.8.3 Tune Fine Class 3 Weights

The fine class 3 weight ratio of 1.0 is discovered to have the best performance.

www.manaraa.com

Table 4.42: Logit Class 3 weight ratio 1.0. This option is chosen.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.882 0.860 0.859 0.617 (357.1 / 41.7) (25.6 / 54.4)
trainCls-3 0.846 0.852 0.882 0.401 (3628.6 / 120.7) (390.0 / 170.9)
testCls-3 0.795 0.803 0.873 0.360 (401.2 / 15.4) (45.2 / 17.0)

Table 4.43: Logit Class 3 weight ratio 0.5

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.870 0.852 0.839 0.445 (370.9 / 65.1) (11.8 / 31.0)
trainCls-3 0.838 0.838 0.929 0.288 (3942.0 / 229.7) (76.6 / 61.9)
testCls-3 0.792 0.798 0.925 0.246 (437.2 / 26.5) (9.2 / 5.9)

Table 4.44: Logit Class 3 weight ratio 1.5

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.879 0.855 0.832 0.626 (331.2 / 28.9) (51.5 / 67.2)
trainCls-3 0.849 0.859 0.813 0.351 (3288.4 / 74.5) (730.2 / 217.1)
testCls-3 0.795 0.805 0.804 0.318 (363.3 / 10.6) (83.1 / 21.8)

4.8.4 Tune Fine Class 4 Weights

The fine class 4 weight ratio of 1.5 is discovered to have the best performance.

Table 4.45: Logit Class 4 weight ratio 1.0

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.882 0.860 0.859 0.617 (357.1 / 41.7) (25.6 / 54.4)
trainCls-4 0.937 0.942 0.960 0.531 (4038.6 / 72.9) (100.6 / 98.1)
testCls-4 0.882 0.902 0.952 0.433 (447.1 / 10.2) (12.7 / 8.8)

www.manaraa.com

Table 4.46: Logit Class 4 weight ratio 0.5

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.875 0.852 0.855 0.590 (359.2 / 45.9) (23.5 / 50.2)
trainCls-4 0.928 0.932 0.965 0.397 (4108.1 / 120.9) (31.1 / 50.1)
testCls-4 0.878 0.898 0.962 0.320 (456.0 / 14.6) (3.8 / 4.4)

Table 4.47: Logit Class 4 weight ratio 1.5. This option is chosen.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.883 0.861 0.856 0.624 (352.4 / 38.8) (30.3 / 57.3)
trainCls-4 0.941 0.947 0.936 0.462 (3918.1 / 53.2) (221.1 / 117.8)
testCls-4 0.886 0.903 0.926 0.382 (432.5 / 8.0) (27.3 / 11.0)

Table 4.48: Logit Class 4 weight ratio 2.0

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.880 0.859 0.853 0.627 (348.9 / 36.7) (33.8 / 59.4)
trainCls-4 0.943 0.950 0.917 0.429 (3817.7 / 36.5) (321.5 / 134.5)
testCls-4 0.886 0.903 0.906 0.352 (421.8 / 6.8) (38.0 / 12.2)

4.8.5 Tune Fine Class 5 Weights

The fine class 5 weight ratio of 10.0 is discovered to have the best performance.

Table 4.49: Logit Class 5 weight ratio 1.0

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.883 0.861 0.856 0.624 (352.4 / 38.8) (30.3 / 57.3)
trainCls-5 0.940 0.941 0.998 0.000 (4300.2 / 10.0) (0.0 / 0.0)
testCls-5 0.393 0.681 0.998 0.000 (477.8 / 1.0) (0.0 / 0.0)

www.manaraa.com

Table 4.50: Logit Class 5 weight ratio 0.5

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.883 0.861 0.856 0.624 (352.4 / 38.8) (30.3 / 57.3)
trainCls-5 0.911 0.912 0.998 0.000 (4300.2 / 10.0) (0.0 / 0.0)
testCls-5 0.389 0.672 0.998 0.000 (477.8 / 1.0) (0.0 / 0.0)

Table 4.51: Logit Class 5 weight ratio 1.5

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.883 0.861 0.856 0.624 (352.4 / 38.8) (30.3 / 57.3)
trainCls-5 0.957 0.958 0.998 0.000 (4300.2 / 10.0) (0.0 / 0.0)
testCls-5 0.396 0.687 0.998 0.000 (477.8 / 1.0) (0.0 / 0.0)

Table 4.52: Logit Class 5 weight ratio 5.0

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.883 0.861 0.856 0.624 (352.4 / 38.8) (30.3 / 57.3)
trainCls-5 0.990 0.990 0.998 0.374 (4299.8 / 7.6) (0.4 / 2.4)
testCls-5 0.401 0.694 0.998 0.000 (477.7 / 1.0) (0.1 / 0.0)

Table 4.53: Logit Class 5 weight ratio 10.0. This option is chosen.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.883 0.861 0.855 0.623 (352.1 / 38.8) (30.6 / 57.3)
trainCls-5 0.996 0.997 0.998 0.609 (4293.4 / 2.7) (6.8 / 7.3)
testCls-5 0.402 0.696 0.996 0.000 (476.8 / 1.0) (1.0 / 0.0)

Table 4.54: LogitCls5-Wt20

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.881 0.860 0.854 0.622 (351.6 / 38.7) (31.1 / 57.4)
trainCls-5 0.998 0.998 0.992 0.355 (4265.8 / 0.5) (34.4 / 9.5)
testCls-5 0.381 0.616 0.989 0.000 (473.5 / 1.0) (4.3 / 0.0)

www.manaraa.com

4.8.6 Tune Fine Class 6 Weights

The fine class 6 weight ratio of 2.0 is discovered to have the best performance.

Table 4.55: Logit Class 6 weight ratio 1.0

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.883 0.861 0.855 0.623 (352.1 / 38.8) (30.6 / 57.3)
trainCls-6 0.945 0.962 0.976 0.303 (4182.5 / 70.8) (34.1 / 22.8)
testCls-6 0.892 0.936 0.972 0.191 (463.9 / 8.8) (4.5 / 1.6)

Table 4.56: Logit Class 6 weight ratio 0.5

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.882 0.860 0.855 0.622 (352.1 / 38.9) (30.6 / 57.2)
trainCls-6 0.938 0.956 0.978 0.006 (4216.5 / 93.3) (0.1 / 0.3)
testCls-6 0.881 0.928 0.978 0.000 (468.3 / 10.4) (0.1 / 0.0)

Table 4.57: Logit Class 6 weight ratio 2.0. This option is chosen.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.884 0.861 0.855 0.627 (350.8 / 37.6) (31.9 / 58.5)
trainCls-6 0.950 0.967 0.949 0.380 (4023.8 / 26.4) (192.8 / 67.2)
testCls-6 0.897 0.939 0.945 0.292 (447.0 / 5.0) (21.4 / 5.4)

Table 4.58: Logit Class 6 weight ratio 3.0

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.884 0.860 0.850 0.629 (346.6 / 35.5) (36.1 / 60.6)
trainCls-6 0.952 0.969 0.921 0.335 (3885.8 / 8.3) (330.8 / 85.3)
testCls-6 0.898 0.940 0.915 0.281 (430.5 / 2.6) (37.9 / 7.8)

4.8.7 Tune Fine Class 7 Weights

The fine class 7 weight ratio of 3.0 is discovered to have the best performance.

www.manaraa.com

Table 4.59: Logit Class 7 weight ratio 1.0

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.884 0.862 0.855 0.628 (350.8 / 37.5) (31.9 / 58.6)
trainCls-7 0.892 0.893 0.988 0.000 (4257.1 / 53.1) (0.0 / 0.0)
testCls-7 0.648 0.720 0.988 0.000 (472.9 / 5.9) (0.0 / 0.0)

Table 4.60: Logit Class 7 weight ratio 0.5

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.884 0.861 0.855 0.627 (350.8 / 37.6) (31.9 / 58.5)
trainCls-7 0.859 0.857 0.988 0.000 (4257.1 / 53.1) (0.0 / 0.0)
testCls-7 0.636 0.708 0.988 0.000 (472.9 / 5.9) (0.0 / 0.0)

Table 4.61: Logit Class 7 weight ratio 3.0. This option is chosen.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.885 0.863 0.855 0.632 (350.1 / 36.7) (32.6 / 59.4)
trainCls-7 0.930 0.939 0.986 0.344 (4234.1 / 37.3) (23.0 / 15.8)
testCls-7 0.667 0.739 0.983 0.105 (470.1 / 5.4) (2.8 / 0.5)

Table 4.62: Logit Class 7 weight ratio 5.0

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.883 0.860 0.847 0.628 (344.0 / 34.4) (38.7 / 61.7)
trainCls-7 0.941 0.953 0.956 0.265 (4086.0 / 18.9) (171.1 / 34.2)
testCls-7 0.674 0.744 0.948 0.099 (452.3 / 4.5) (20.6 / 1.4)

4.8.8 Tune Fine Class 8 Weights

The fine class 8 weight ratio of 1.0 is discovered to have the best performance.

www.manaraa.com

Table 4.63: Logit Class 8 weight ratio 1.0. This option is chosen.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.886 0.864 0.855 0.632 (350.1 / 36.6) (32.6 / 59.5)
trainCls-8 0.967 0.978 0.982 0.453 (4199.8 / 36.1) (42.0 / 32.3)
testCls-8 0.896 0.952 0.978 0.308 (465.7 / 5.2) (5.5 / 2.4)

Table 4.64: Logit Class 8 weight ratio 0.5

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.885 0.862 0.855 0.630 (350.4 / 37.0) (32.3 / 59.1)
trainCls-8 0.961 0.972 0.984 0.253 (4229.6 / 56.7) (12.2 / 11.7)
testCls-8 0.893 0.952 0.982 0.135 (469.5 / 6.8) (1.7 / 0.8)

Table 4.65: Logit Class 8 weight ratio 1.5

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

fine 0.886 0.864 0.855 0.632 (349.5 / 36.4) (33.2 / 59.7)
trainCls-8 0.967 0.980 0.978 0.478 (4169.7 / 24.3) (72.1 / 44.1)
testCls-8 0.892 0.947 0.973 0.376 (462.2 / 3.9) (9.0 / 3.7)

4.9 Varying Logistic Regression Tolerance

There is an additional Logit parameter for determining a tolerance for the stop-

ping criteria. The default tolerance is 0.0001. The tolerance setting of 0.00001 is

discovered to have the best performance.

Table 4.66: Logit results after fine tuning, effectively had a tolerance of 0.0001

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.880 0.863 0.668 0.517 (234.8 / 11.1) (147.9 / 85.0)
fine 0.886 0.864 0.855 0.632 (350.1 / 36.6) (32.6 / 59.5)

www.manaraa.com

Table 4.67: Logit Tolerance 0.0001, notice that the fine PR and ROC decreased by
0.001, and that the coarse ROC decreased by 0.001 upon rerunning, there is some
statistical variation in these metrics.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.880 0.862 0.668 0.518 (234.9 / 11.1) (147.8 / 85.0)
fine 0.885 0.863 0.855 0.632 (350.1 / 36.7) (32.6 / 59.4)

Table 4.68: Logit Tolerance 0.00001. This option is chosen.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.880 0.863 0.668 0.517 (234.7 / 11.1) (148.0 / 85.0)
fine 0.886 0.864 0.855 0.632 (350.1 / 36.6) (32.6 / 59.5)

Table 4.69: Logit Tolerance 0.000001

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.880 0.862 0.668 0.517 (234.8 / 11.1) (147.9 / 85.0)
fine 0.885 0.863 0.855 0.632 (350.1 / 36.7) (32.6 / 59.4)

4.10 Varying Sample Weight On Test Set and

Dropping Intermediate ROC Curve Values

The sample weight, as stated previously, weights fine instances in the ROC and PR

curves by the ratio of total number of instances in the test set divided by the total

number of positives in the test set. This weighting is performed identically on the

coarse and fine classifier. The ROC curve library has a parameter to determine

whether or not to drop some suboptimal thresholds which do not appear on a

plotted ROC curve [10]. The default setting is to drop intermediate values, which

has the counterintuitive result of a ROC curve having on the order of 150 points

even though 497 points are passed to the ROC curve library method. If drop

www.manaraa.com

intermediate values is set to false then the full 497 points are returned in the

calculated ROC curve. The default options of using sample weights and dropping

intermediate values are discovered to have the best performance.

Table 4.70: Logit sample weights, drop intermediate values True. The default
option is chosen.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.880 0.862 0.668 0.517 (234.8 / 11.1) (147.9 / 85.0)
fine 0.885 0.863 0.855 0.632 (350.1 / 36.7) (32.6 / 59.4)

Table 4.71: Logit no sample weights, drop intermediate values True

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.649 0.862 0.668 0.517 (234.8 / 11.1) (147.9 / 85.0)
fine 0.663 0.863 0.855 0.632 (350.1 / 36.7) (32.6 / 59.4)

Table 4.72: Logit sample weights, drop intermediate values False

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.880 0.862 0.668 0.517 (234.8 / 11.1) (147.9 / 85.0)
fine 0.885 0.863 0.855 0.632 (350.1 / 36.7) (32.6 / 59.4)

Table 4.73: Logit no sample weights, drop intermediate values False

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.649 0.862 0.668 0.517 (234.8 / 11.1) (147.9 / 85.0)
fine 0.663 0.863 0.855 0.632 (350.1 / 36.7) (32.6 / 59.4)

www.manaraa.com

4.11 Varying Logistic Regression Positive Class

Weight for Full Dataset

The fine class weight for the subset of data is determined be to 7.5, this value

should change and be linearly dependent upon the number of instances in the

training set. The weight for the fine class is tuned using all of the data, the original

value is the total number of instances in the train set divided by the total number

of positives in the train set, which evaluates to 20.887. The previously determined

fine class ratios are used in this analysis. The value selected is 23, this value along

with 7.5 and the original values of 20.887 and 4.977 for a line with two points that

define a function to map a weight original input to a new tuned weight output

for all training set sizes. The fine weight of 23 is discovered to have the best

performance when the entire dataset is used.

Table 4.74: Logit entire dataset, weight 20.887

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.867 0.868 0.803 0.280 (1537.6 / 19.2) (376.0 / 76.9)
fine 0.871 0.868 0.919 0.404 (1792.3 / 41.0) (121.2 / 55.1)

Table 4.75: Logit entire dataset, weight 23.0. This option is chosen.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.870 0.871 0.787 0.268 (1503.2 / 17.8) (410.4 / 78.3)
fine 0.875 0.871 0.913 0.403 (1776.5 / 37.3) (137.1 / 58.8)

Table 4.76: Logit entire dataset, weight 25.0.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.867 0.868 0.772 0.256 (1473.0 / 17.3) (440.6 / 78.8)
fine 0.871 0.868 0.905 0.389 (1758.8 / 35.6) (154.8 / 60.6)

www.manaraa.com

4.12 Varying SVM Cost and Gamma

After the Logit classifier is tuned with class weights, the SVM is run again with

the class weights determined by the Logit classifier and a slight advantage for the

fine-grained classifier is demonstrated with the SVM as well. The SVM parameters

for the RBF kernel of cost and gamma are varied. The cost is related to a penalty

parameter for the error term and gamma is the kernel coefficient and determines

the relative significance a single instance can have. The default gamma setting is

0.002967 ≈ 0.003 or (1/num-features) or (1/337). Default cost is actually 1.0, and

the default class weight is balanced which weights each class by the number of

instances it has in the train set, the same fine class weights used in the LogReg

classifier are used in the SVM classifier instead of the SVM’s default balanced

option. The fine-grained classifier achieves a PR-AUC value of 0.906, which is

greater than the highest PR-AUC achieved by the coarse-grained classifier which

is 0.903. Thus, the SVM parameters of Cost 0.15 and Gamma 0.002 are discovered

to have the best performance.

Table 4.77: SVM Cost 1.0 Gamma 0.003

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.901 0.874 0.846 0.651 (336.0 / 27.2) (46.7 / 68.9)
fine 0.896 0.865 0.871 0.598 (371.1 / 50.1) (11.6 / 46.0)

Table 4.78: SVM Cost 2.0 Gamma 0.003

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.903 0.873 0.866 0.672 (348.9 / 30.4) (33.8 / 65.7)
fine 0.890 0.857 0.865 0.554 (373.8 / 55.8) (8.9 / 40.3)

www.manaraa.com

Table 4.79: SVM Cost 0.1 Gamma 0.003

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.892 0.869 0.664 0.518 (231.5 / 9.8) (151.2 / 86.3)
fine 0.899 0.870 0.868 0.623 (363.5 / 43.8) (19.2 / 52.3)

Table 4.80: SVM Cost 0.05 Gamma 0.003

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.883 0.860 0.591 0.474 (194.9 / 8.0) (187.8 / 88.1)
fine 0.884 0.853 0.858 0.544 (370.1 / 55.5) (12.6 / 40.6)

Table 4.81: SVM Cost 0.15 Gamma 0.003

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.896 0.873 0.714 0.553 (257.5 / 11.6) (125.2 / 84.5)
fine 0.902 0.874 0.871 0.640 (362.1 / 41.1) (20.6 / 55.0)

Table 4.82: SVM Cost 0.2 Gamma 0.003

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.899 0.875 0.755 0.584 (279.6 / 14.0) (103.1 / 82.1)
fine 0.903 0.875 0.871 0.640 (362.1 / 41.2) (20.6 / 54.9)

Table 4.83: SVM Cost 0.15 Gamma 0.002. This option for Cost and Gamma is
chosen.

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.894 0.871 0.706 0.545 (253.6 / 11.7) (129.1 / 84.4)
fine 0.906 0.877 0.869 0.646 (358.3 / 38.5) (24.4 / 57.6)

Table 4.84: SVM Cost 0.15 Gamma 0.001

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.883 0.864 0.664 0.516 (232.1 / 10.3) (150.6 / 85.8)
fine 0.900 0.872 0.868 0.641 (358.5 / 39.2) (24.2 / 56.9)

www.manaraa.com

Chapter 5

Results and Analysis

This chapter presents the experimental results for this work. There are no other

results known for classifier performance on this dataset to use for comparison [3].

Our primary concern is to use the protein dataset to evaluate the HAL approach.

We start by analyzing the SVM and Logit classifier performance in the conventional

ML setting, we show that the accuracy and F1-measure metrics can be seen as

a function of a chosen point on the PR and ROC curves. We show that no clear

advantage exists for fine-grained over coarse-grained with respect to the accuracy

or F1-measure metrics. An advantage does exist for the PR-AUC metric but not

for the ROC-AUC metric; this is examined and shown to be a result of the heavy

class imbalance of the protein dataset. PR-AUC is chosen as the primary metric

to evaluate classifier performance, due to its sensitivity to false positives as well

as true positives, and its lack of dependence on a chosen threshold to generate a

confusion matrix.

Experiments are performed comparing active learning versus passive learning

and coarse-grained versus fine-grained with both the Logit and SVM classifier. In

both cases active outperforms passive and fine-grained outperforms coarse-grained.

www.manaraa.com

Logit shows a greater advantage for fine-grained and is used in subsequent

experiments with the HAL approach. HAL is applied to the protein dataset for

various costs, budgets and fine-grained purchase proportions. HAL is shown to

determine an optimal fine-grained purchase proportion strategy that achieves the

best performing classifier for a given budget.

5.1 SVM and Logit Classifier Performance

Results are presented running both Logit and SVM classifiers on the entire dataset

see Tables 5.1-5.2. Both the SVM and the Logit classifiers show a slight advantage

for the fine classifier over the coarse classifier in terms of the PR-AUC metric. The

ROC-AUC metric is close to identical between fine and coarse for both classifiers,

a slight advantage of 0.002 exists for the fine classifier in the SVM classifier.

Table 5.1: Logit entire dataset results after parameter tuning

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.870 0.871 0.787 0.268 (1503.2 / 17.8) (410.4 / 78.3)
fine 0.875 0.871 0.913 0.403 (1776.5 / 37.3) (137.1 / 58.8)

Table 5.2: SVM entire dataset results after parameter tuning

Title PR ROC Acc F1 conf (tn/fn) conf (fp/tp)

coarse 0.892 0.880 0.866 0.347 (1669.5 / 24.8) (244.1 / 71.3)
fine 0.898 0.882 0.942 0.485 (1839.0 / 41.5) (74.6 / 54.6)

The coarse classifier in both the Logit and SVM classifier has a greater amount

of false positives at the default threshold. A further examination of these values

is shown in Figures 5.1-5.2 and Figures 5.3-5.4. The figures plot the PR and the

ROC curves for each of the 10 folds. Each point on the PR and ROC curve has a

www.manaraa.com

corresponding F-measure or accuracy value; these values are plotted on the graphs

as a blue line. The graphs demonstrate that the coarse and fine classifiers have

close to equivalent average AUC, on the order of 0.007 max difference between

fine and coarse. At the default threshold the fine appears to outperform coarse for

accuracy and F-measure metrics, but inspection of the plots shows that a coarse

threshold can be chosen to match the fine output for both accuracy and F-measure.

The PR-AUC does show a slight advantage for fine, which warrants application of

the HAL algorithm and Active over labeling approach on this dataset.

(a) Log Reg PR Curves - Coarse (b) Log Reg PR Curves - Fine

Figure 5.1: The fine default threshold occurs at a point on the PR curve associated
with a higher F-measure score compared to the coarse curves.

www.manaraa.com

(a) Log Reg ROC Curves - coarse (b) Log Reg ROC Curves - fine

Figure 5.2: Fine has a higher accuracy than coarse at the default threshold for the
Logit classifier.

(a) SVM Pr Curves - Coarse (b) SVM Pr Curves - Fine

Figure 5.3: SVM results for PR curves and F-measure have coarse and fine picking
different parts of the curves for their respective thresholds. This results in a slight
advantage for fine at the default threshold, similar to the results for the Logit
classifier.

www.manaraa.com

(a) SVM ROC Curves - Coarse (b) SVM ROC Curves - Fine

Figure 5.4: SVM accuracy results are similar between coarse and fine.

5.2 Active vs. Passive Curve Analysis

The plots in Figures 5.5-5.9 were obtained with a round batch size of 100 and

a starter set of 1040 instances out of the total 20098 instances. The plots are

the average of 10 folds, for each fold a test set of 2010 instances is used. The

test set remains constant throughout the rounds and contains a representative

proportion of each of the classes. The starter set is chosen out of the remaining

18088 and it also contains representatives from each class in proportion to that

class’s prominence in the dataset. The 17048 non-test set, non-starter set instances

are added to the training set in batches of 100. This results in total of 171 rounds,

170 batch selecting rounds and 1 starter set round. The Passive approach selects

100 random instances and adds them to the train set. The Active approach runs

the classifier on the eligible instances, orders them by their uncertainty and adds

the 100 most uncertain instances to the train set. Coarse and fine classifiers share

the same starter set. During each round, coarse and fine classifiers are trained

on their corresponding sets, which are independent of one another, metrics are

outputted on the held out test set which is the same for both coarse and fine.

www.manaraa.com

5.2.1 Plots for Logistic Regression Active vs. Passive Curves

Figure 5.5: The PR-AUC curves for rounds with the Logistic Regression classifier
conforms to expectations, with active fine having the best performance, and Active
outperforming Passive for both coarse and fine classifier types.

www.manaraa.com

Figure 5.6: The ROC-AUC curves for rounds with the Logistic Regression classifier.
The active curves beat out the passive curves for both coarse and fine. Note that
active fine ROC curve doesn’t converge to the active coarse ROC curve until round
40. This is contrasted to a dominance of the active fine PR curve after round 10.

www.manaraa.com

(a) Logit accuracy

(b) Logit F-measure

Figure 5.7: The accuracy of the classifiers stays at roughly the same rate throughout
the rounds; this is due to an effective weighting scheme. Both curves show a
dominance of fine over coarse and Active over Passive.

www.manaraa.com

Note that the Active Fine PR-AUC curve surpasses active coarse after round

10 while the active fine ROC-AUC curve is still well below the active coarse at

that round. These curves are shown in Figures 5.8-5.9. This is counter-intuitive,

because according to a proof in Davis [32] “For a fixed number of positive and

negative examples, one curve dominates a second curve in ROC space if and only

if the first dominates the second in Precision-Recall space”. The theorem uses the

following definition of dominance: that every value in the first curve is above the

corollary value in second curve. The correlation between PR and ROC curves is

that Recall in the PR curve is equivalent to the True Positive Rate in the ROC curve.

The average PR-AUC concept is different than that of a plot of PR curves for a

round, but if all of the PR curves for fine dominate the curves for coarse then we

would expect all of the ROC curves for fine to dominate the ROC curves for coarse

and both the ROC-AUC and PR-AUC averages for fine to be greater than that

for coarse. However it is shown in Figure 5.8 that the PR curves for fine do not

completely dominate the PR curves for coarse, and similarly for the ROC curves in

Figure 5.9. Active fine PR-AUC curve does not satisfy the theorem’s definition of

dominance, since each individual ROC and PR curve contains intersection points

between coarse and fine. Thus given that the average PR-AUC for fine is great at

round 20 than average coarse PR-AUC, this relationship is not expected to hold

between the average ROC-AUC curves.

According to Davis [32], a large change in the number of false positives can

still correlate to only only a small change in the number of true positives and thus

not affect ROC curve performance. However, Davis states, “Precision, on the other

hand, by comparing false positives to true positives rather than true negatives,

captures the effect of the large number of (incorrectly classified) negative examples

on the algorithm’s performance” [32]. Since our dataset demonstrates a heavy

www.manaraa.com

class imbalance with a roughly 1:20 ratio of positive to negative instances, the

algorithm’s ability to classify negative instances should be taken into account when

considering overall classifier performance. The PR curve’s ability to capture the

effect of an increased number of false positives, reveals the advantage that the fine

classifier has over the coarse classifier. This justifies purchasing fine-grained labels

over coarse-grained labels to improve classifier performance.

(a) Coarse PR curves at Round 20 (b) Fine PR curves at Round 20

Figure 5.8: PR curves for each fold at Round 20

(a) Coarse ROC curves at Round 20 (b) Fine ROC curves at Round 20

Figure 5.9: ROC curves for each fold at Round 20

www.manaraa.com

5.2.2 Plots for SVM Active vs. Passive Curves

The SVM Active vs. Passive experiment is performed with the same methodology

as the previous section detailed with the exception that a SVM classifier is substi-

tuted for the Logit classifier. Due to the greater advantage of average PR-AUC

in the Logit classifier, the SVM is not used in the Fixed fine ratio experiments in

Section 5.3 Plots for Fine Fixed Ratio (FFR) experiments.

Figure 5.10: The PR AUC curves for SVM show a slight advantage for active fine,
similar to the Logit results.

www.manaraa.com

Figure 5.11: The ROC AUC curves for SVM match the Logit results, the conver-
gence of active fine to active coarse takes slightly longer, round 60 compared to
round 40.

www.manaraa.com

5.3 Plots for Fine Fixed Ratio Results

The strategy is changed from purchasing a set number of instances per round

to having a set budget per round and spending a portion of that budget on fine

and coarse grained labels. The Fine Fixed Ratio (FFR), ranges from 0.0 to 1.0 in

increments of 0.1. Note that the FFR 0.0 should roughly correlate to the active

coarse curve shown in Figure 5.5. Likewise the active fine curve should roughly

correlate to the FFR 1.0 curve. However, the correlation is not exact since the

FFR experiments use a combination classifier, it trains fine and coarse classifiers

on a starter set of the same size and proportion as used in the Logit Active vs.

Passive experiment, then uses the confidence of both of those classifiers and the

end prediction is the max of the two classifiers. Thus even for the FFR 0.0 and FFR

1.0 the starter set trained fine or coarse classifier still contributes to the PR-AUC

curve even at the final round 180. The results are an average of 10 folds.

To determine the number of instances to purchase each round, the FFR pro-

portion vector p is multiplied by the round budget of 100. The coarse labels are

purchased at a cost of 1.0. The cost of the fine labels will vary, experiments are

performed for fine costs of {1, 2, 4, 8, 16}. After discussions with Cui et al.’s group

[3], a reasonable estimate for the fine label cost for the protein data set is around

10, due to the increased number of features needed to distinguish a protein’s target

compartment. An example of this cost breakdown is as follows: if the fine cost is 8

and p is 0.5, then 50 labels are purchased for coarse and 6.25 labels are purchased

for fine. The 0.25 of a fine instance is resolved by purchasing an extra fine label

with the probability of 25%. There is a 25% chance for any round to purchase an

extra fine label. The round size for the FFR 1.0 curve is relatively small, with at

most 13 labels purchased per iteration.

www.manaraa.com

Figure 5.12: For this curve the fine and coarse grain labels both have a cost of
1. The purple 1.0 curve shows that if only fine-grained labels are purchased, the
highest performing PR-AUC can be obtained. All FFR ratios end at the same round
since the cost of the fine and coarse instances is the same the budget.

www.manaraa.com

Figure 5.13: At fine cost 2, advantage of the higher FFR values decreases but the
ordering of the curves remains unchanged.

www.manaraa.com

Figure 5.14: At fine cost 4, the highest FFR 1.0 is no longer preferred, the cost is to
high for fine instances PR-AUC utility to overcome the PR-AUC increase gained
by purchasing more coarse instances.

www.manaraa.com

Figure 5.15: At fine cost 8 the middle FFR values outperform the extreme values
for rounds 0 to 180.

www.manaraa.com

Figure 5.16: This shows the iterations continuing through round 500, the curves
with the higher fine rates eventually settle to the same end point that the curves
with the high rates of coarse labels purchased achieved at previous iterations.

www.manaraa.com

Figure 5.17: The fine cost 8 curves shown expanding the rounds 20-60. If a round
budget of 40 occurs than the recommended FFR would be 0.2.

www.manaraa.com

Figure 5.18: The fine cost is increased to 16. The cost is to high for the fine label
advantage to offset the decreased number of instances purchased.

5.4 BANDIT Approach Results

The BANDIT approach is applied to the protein dataset. The two arms or purchas-

ing strategies are all-coarse (FFR 0.0) or all-fine (FFR 1.0). A starter set is selected

of the same size and proportion as used in the Logit Active vs. Passive and FFR

experiments. The combined prediction strategy is the same as used in the FFR

experiments. The BANDIT approach is compared to the previous FFR curves

for the following fine-grain costs {1.0, 1.1, 1.2, 1.5, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0}. We

evaluate the robustness of the algorithm with respect to cost by holding the budget

fixed, and then plotting the PR-AUC as cost varies, see Figure 5.19. The budget

www.manaraa.com

iteration of 120 is selected as it is late enough in the progression of rounds for

separation of the purchase strategies PR-AUC to occur and curve orderings to

stabilize. Figure 5.19 shows that FFR 0.0 is not affected by variation in fine cost, this

is expected since no fine labels are purchased in that strategy. The AUC values for

the other FFR strategies decreases drastically as the fine cost increases and labels

become more expensive. The BANDIT curve is robust to changes in cost and is

almost always among the top curves.

Figure 5.19: BANDIT log fine cost analysis with budget fixed.

Further metrics are developed to compare the performance of the purchase

strategies as fine cost varies. The metric diff is the learner’s absolute difference in

PR-AUC from the top learner for a given cost. The metric rank is the learners 0

www.manaraa.com

indexed ranking in terms of PR-AUC for a given cost. For each purchase strategy,

these metrics are calculated for each fine cost experiment. The min, max, mean,

and std are calculated for the 10 diff and rank values for each purchase strategy

and its results are presented in Table 5.3. The diff of BANDIT is in the range of

[0.000− 0.003] and averages 0.001 away from the top learner. This is the lowest

among all learners, tying the FFR 0.3. The rank of BANDIT is in the range of

0− 8 with a mean of 4.8. This outperforms the FFR 0.3 strategy, which has a mean

of 5.1. BANDIT has one of the lowest mean ranks and diffs among all learners,

and thus is robust to variations in fine cost. This is important since the real cost

of a fine-grained label vs. a coarse-grained label is often not known or can only

estimated.

Table 5.3: Aggregated PR AUC for the protein dataset

diff rank
min max mean std min max mean std

algorithm
BANDIT 0.000 0.003 0.001 0.001 0 8 4.8 2.315

FFR[0.0] 0.000 0.011 0.007 0.004 1 11 8.8 3.429

FFR[0.1] 0.001 0.006 0.003 0.002 3 10 8.0 2.793

FFR[0.2] 0.000 0.004 0.002 0.001 0 9 6.5 3.500

FFR[0.3] 0.000 0.003 0.001 0.001 0 8 5.1 2.663

FFR[0.4] 0.000 0.004 0.002 0.001 1 8 5.6 2.200

FFR[0.5] 0.000 0.008 0.002 0.002 0 8 4.6 2.200

FFR[0.6] 0.000 0.009 0.002 0.003 1 7 4.6 1.855

FFR[0.7] 0.000 0.012 0.002 0.004 0 8 3.3 2.571

FFR[0.8] 0.000 0.015 0.003 0.005 1 9 4.8 3.027

FFR[0.9] 0.000 0.020 0.005 0.007 0 10 4.3 4.605

FFR[1.0] 0.000 0.038 0.009 0.013 1 11 5.6 4.630

BANDIT is evaluated as budget changes by averaging the PR-AUC values

across the various cost experiments for every budget iteration. These results are

presented in Figure 5.20. For each fine cost experiment a different FFR ratio may

www.manaraa.com

be preferred, e.g., FFR 1.0 is preferable at fine cost 1, but not at a more expensive

fine cost of 16. BANDIT performs well against the FFR strategies across all budget

iterations and is consistently among the top learners. Thus, BANDIT is robust to

variation in both labeling budget and cost.

Figure 5.20: BANDIT mixed fine cost plot.

www.manaraa.com

Figure 5.21: The fine cost 8 curves shown expanding the rounds 20-60. With the
BANDIT approach plotted. At budget iteration 40, BANDIT PR-AUC is within
0.0007 of the top learner’s PR-AUC.

www.manaraa.com

Chapter 6

Conclusions and Future Work

The protein data set demonstrated that fine-grained labels can be used to improve

the coarse-grained classifier performance. Both SVM and Logit classifiers show

an advantage of around 0.005 in average PR-AUC and around 0.001 in ROC-AUC.

Experiments comparing active and passive learning for both fine and coarse clas-

sifiers are performed, the results shown in Section 5.2 demonstrate a prominent

advantage for active fine with the Logit classifier. Furthermore HAL is imple-

mented and applied to the protein dataset for various FFR proportions and fine

label costs. After discussions with Cui et. al’s group at UNL [3] the fine label

estimated cost is around 10. This correlates to the FFR experiment with fine cost 8,

which shows that for a budget of around 20-60 rounds a FFR strategy of 0.2 would

have the best performance, see Figure 5.17.

The BANDIT approach is applied to the protein dataset in order to achieve an

optimal strategy for dynamically selecting the FFR proportion vector throughout

all rounds, see Section 5.4. The BANDIT approach is shown to be robust to

variations in both labeling cost and budget for the protein dataset. For a budget

of around 20-60 rounds and fine cost of 8, BANDIT is consistently within 0.001

www.manaraa.com

in PR-AUC of the top FFR learner see Figure 5.21. Future work is to apply the

active over-labeling approach to other datasets with more complex hierarchical

label trees; datasets derived from Gene Ontology research could be investigated

[33].

www.manaraa.com

Bibliography

[1] Y. Mo, S. D. Scott, and D. Downey, “Learning hierarchically decomposable

concepts with active over-labeling,” in 2016 IEEE 16th International Conference

on Data Mining (ICDM), Dec 2016, pp. 340–349. (document), 1, 2.4, 2.3, 2.5, 1,

2.7, 2, 3.1, 3.2

[2] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “RCV1: A New Benchmark

Collection for Text Categorization Research,” Journal of Machine Learning

Research, vol. 5, pp. 361–397, 2004. (document), 2.5, 2.4, 3.2

[3] J. Z. Juan Cui, Kevin Chiang, “Prediction of nuclear and locally encoded

mitochondrion.” Lincoln, NE: Nebraska Gateway to Nutrigenomics 6th

Annual Retreat, June 9 2014. [Online]. Available: http://cehs.unl.edu/

nutrigenomics/nebraska-gateway-nutrigenomics-6th-annual-retreat/ 1, 2.3,

2.2, 2.6, 5, 5.3, 6

[4] T. M. Mitchell, Machine Learning, 1st ed. New York, NY, USA: McGraw-Hill,

Inc., 1997. 1, 2.1

[5] K. Tomanek and F. Olsson, “A web survey on the use of active

learning to support annotation of text data,” in Proceedings of the

NAACL HLT 2009 Workshop on Active Learning for Natural Language

Processing, ser. HLT ’09. Stroudsburg, PA, USA: Association for

http://cehs.unl.edu/nutrigenomics/nebraska-gateway-nutrigenomics-6th-annual-retreat/
http://cehs.unl.edu/nutrigenomics/nebraska-gateway-nutrigenomics-6th-annual-retreat/

www.manaraa.com

Computational Linguistics, 2009, pp. 45–48. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=1564131.1564140 1

[6] S. Dasgupta, “Analysis of a greedy active learning strategy,” in Proceedings of

the 17th International Conference on Neural Information Processing Systems, ser.

NIPS’04. Cambridge, MA, USA: MIT Press, 2004, pp. 337–344. [Online].

Available: http://dl.acm.org/citation.cfm?id=2976040.2976083 1

[7] B. Settles, “Active learning literature survey,” Science, vol. 10, no. 3, pp. 237–

304, 1995. 1

[8] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,

V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas,

A. Joly, B. Holt, and G. Varoquaux, “API design for machine learning software:

experiences from the scikit-learn project,” in ECML PKDD Workshop: Languages

for Data Mining and Machine Learning, 2013, pp. 108–122. 2.1

[9] A. Ng, “Machine Learning by Standford University,” https://www.coursera.

org/learn/machine-learning/home/welcome, 2016, accessed: 2016-12-5. 2.1

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:

Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp.

2825–2830, 2011. 2.1, 2.1, 2.1, 2.1, 4.1, 4.2, 4.3, 4.4, 4.10

[11] E. Alpaydin, Introduction to Machine Learning (Adaptive Computation and

Machine Learning series), 2nd ed. Cambridge, Massachusetts: The MIT Press,

2009. [Online]. Available: https://amzn.com/026201243X 2.1

http://dl.acm.org/citation.cfm?id=1564131.1564140
http://dl.acm.org/citation.cfm?id=1564131.1564140
http://dl.acm.org/citation.cfm?id=2976040.2976083
https://www.coursera.org/learn/machine-learning/home/welcome
https://www.coursera.org/learn/machine-learning/home/welcome
https://amzn.com/026201243X

www.manaraa.com

[12] D. Cotter, P. Guda, E. Fahy, and S. Subramaniam, “Mitoproteome:

mitochondrial protein sequence database and annotation system,” Nucleic

Acids Research, vol. 32, no. suppl1, p. D463, 2004. [Online]. Available:

+http://dx.doi.org/10.1093/nar/gkh048 2.3

[13] “Activities at the universal protein resource (uniprot),” Nucleic Acids

Research, vol. 42, no. D1, p. D191, 2014. [Online]. Available: http:

//dx.doi.org/10.1093/nar/gkt1140 2.3

[14] Z. R. Li, H. H. Lin, L. Y. Han, L. Jiang, X. Chen, and Y. Z. Chen, “Profeat:

a web server for computing structural and physicochemical features of

proteins and peptides from amino acid sequence,” Nucleic Acids Research,

vol. 34, no. Web Server issue, pp. W32–W37, 07 2006. [Online]. Available:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1538821/ 2.2

[15] J. Cui, L. Y. Han, H. Li, C. Y. Ung, Z. Q. Tang, C. J. Zheng,

Z. W. Cao, and Y. Z. Chen, “Computer prediction of allergen proteins

from sequence-derived protein structural and physicochemical properties,”

Molecular Immunology, vol. 44, no. 4, pp. 514 – 520, 2007. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0161589006000368 2.2

[16] J. M. Brown and A. J. Giaccia, “The unique physiology of solid

tumors: Opportunities (and problems) for cancer therapy,” Cancer

Research, vol. 58, no. 7, pp. 1408–1416, 1998. [Online]. Available:

http://cancerres.aacrjournals.org/content/58/7/1408 2.2

[17] L. Kll, A. Krogh, and E. L. L. Sonnhammer, “An hmm posterior decoder

for sequence feature prediction that includes homology information,”

+ http://dx.doi.org/10.1093/nar/gkh048
http://dx.doi.org/10.1093/nar/gkt1140
http://dx.doi.org/10.1093/nar/gkt1140
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1538821/
http://www.sciencedirect.com/science/article/pii/S0161589006000368
http://cancerres.aacrjournals.org/content/58/7/1408

www.manaraa.com

Bioinformatics, vol. 21, no. suppl-1, p. i251, 2005. [Online]. Available:

+http://dx.doi.org/10.1093/bioinformatics/bti1014 2.2

[18] F. Eisenhaber, C. Frmmel, and P. Argos, “Prediction of secondary

structural content of proteins from their amino acid composition alone.

ii. the paradox with secondary structural class,” Proteins: Structure,

Function, and Bioinformatics, vol. 25, no. 2, pp. 169–179, 1996.

[Online]. Available: http://dx.doi.org/10.1002/(SICI)1097-0134(199606)25:

2〈169::AID-PROT3〉3.0.CO;2-D 2.2

[19] J. D. Bendtsen, H. Nielsen, G. von Heijne, and S. Brunak, “Improved

prediction of signal peptides: Signalp 3.0,” Journal of Molecular

Biology, vol. 340, no. 4, pp. 783 – 795, 2004. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0022283604005972 2.2

[20] A. G. Garrow, A. Agnew, and D. R. Westhead, “Tmb-hunt: a web

server to screen sequence sets for transmembrane -barrel proteins,” Nucleic

Acids Research, vol. 33, no. suppl2, p. W188, 2005. [Online]. Available:

http://dx.doi.org/10.1093/nar/gki384 2.2

[21] K. Julenius, A. Mlgaard, R. Gupta, and S. Brunak, “Prediction, conservation

analysis, and structural characterization of mammalian mucin-type o-

glycosylation sites,” Glycobiology, vol. 15, no. 2, p. 153, 2005. [Online].

Available: http://dx.doi.org/10.1093/glycob/cwh151 2.2

[22] J. D. Bendtsen, H. Nielsen, D. Widdick, T. Palmer, and S. Brunak, “Prediction

of twin-arginine signal peptides,” BMC bioinformatics, vol. 6, no. 1, p. 167,

2005. 2.2

+ http://dx.doi.org/10.1093/bioinformatics/bti1014
http://dx.doi.org/10.1002/(SICI)1097-0134(199606)25:2<169::AID-PROT3>3.0.CO;2-D
http://dx.doi.org/10.1002/(SICI)1097-0134(199606)25:2<169::AID-PROT3>3.0.CO;2-D
http://www.sciencedirect.com/science/article/pii/S0022283604005972
http://dx.doi.org/10.1093/nar/gki384
http://dx.doi.org/10.1093/glycob/cwh151

www.manaraa.com

[23] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multi-

armed bandit problem,” Machine Learning, vol. 47, no. 2–3, pp. 235–256, 2002.

2.7

[24] A. McCallum, R. Rosenfeld, T. M. Mitchell, and A. Y. Ng, “Improving text

classification by shrinkage in a hierarchy of classes,” in Proceedings of the

Fifteenth International Conference on Machine Learning, ser. ICML ’98. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998, pp. 359–367.

[Online]. Available: http://dl.acm.org/citation.cfm?id=645527.657461 3.1

[25] W. Jiang and Z. W. Ras, “Multi-label automatic indexing of music by cascade

classifiers,” Web Intelli. and Agent Sys., vol. 11, no. 2, pp. 149–170, Apr. 2013.

[Online]. Available: http://dl.acm.org/citation.cfm?id=2590084.2590088 3.1

[26] N. Rubens, D. Kaplan, and M. Sugiyama, “Active learning in recommender

systems,” Recommender Systems Handbook, pp. 1–31, 2011. [Online]. Available:

http://link.springer.com/chapter/10.1007/978-0-387-85820-3 23 3.1

[27] A. Merialdo, “Improving Collaborative Filtering For New-Users

By Smart Object Selection,” In Proceedings of International Con-

ference on Media Features (ICMF), May 2001. [Online]. Avail-

able: http://www.eurecom.fr/publication/670https://www.eurecom.fr/

fr/publication/670/download/mm-kohrar-010508.pdf 3.1

[28] T. Hofmann, “Collaborative filtering via gaussian probabilistic latent semantic

analysis,” in Proceedings of the 26th annual international ACM SIGIR conference

on Research and development in informaion retrieval - SIGIR ’03. New

York, New York, USA: ACM Press, Jul. 2003, p. 259. [Online]. Available:

http://dl.acm.org/citation.cfm?id=860435.860483 3.1

http://dl.acm.org/citation.cfm?id=645527.657461
http://dl.acm.org/citation.cfm?id=2590084.2590088
http://link.springer.com/chapter/10.1007/978-0-387-85820-3_23
http://www.eurecom.fr/publication/670 https://www.eurecom.fr/fr/publication/670/download/mm-kohrar-010508.pdf
http://www.eurecom.fr/publication/670 https://www.eurecom.fr/fr/publication/670/download/mm-kohrar-010508.pdf
http://dl.acm.org/citation.cfm?id=860435.860483

www.manaraa.com

[29] G. Schohn and D. Cohn, “Less is more: Active learning with

support vector machines,” ICML, pp. 839–846, Jun. 2000. [Online].

Available: http://dl.acm.org/citation.cfm?id=645529.657802http://citeseerx.

ist.psu.edu/viewdoc/download?doi=10.1.1.31.6090&rep=rep1&type=pdf 3.1

[30] S. Dasgupta and D. Hsu, “Hierarchical sampling for active learning,”

Proceedings of the 25th international conference on Machine learning - ICML ’08,

pp. 208–215, 2008. [Online]. Available: http://portal.acm.org/citation.cfm?

doid=1390156.1390183 3.1

[31] C. Symons, N. Samatova, R. Krishnamurthy, B. Park, T. Umar, D. Buttler,

T. Critchlow, and D. Hysom, “Multi-Criterion Active Learning in

Conditional Random Fields,” 2006 18th IEEE International Conference

on Tools with Artificial Intelligence (ICTAI’06), pp. 323–331, Nov. 2006.

[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=4031915http://dl.acm.org/citation.cfm?id=1190614.1191040 3.1

[32] J. Davis and M. Goadrich, “The relationship between precision-recall and roc

curves,” in Proceedings of the 23rd International Conference on Machine Learning,

ser. ICML ’06. New York, NY, USA: ACM, 2006, pp. 233–240. [Online].

Available: http://doi.acm.org/10.1145/1143844.1143874 5.2.1

[33] GO Consortium, “The Gene Ontology,” 2014. [Online]. Available:

geneontology.org 6

http://dl.acm.org/citation.cfm?id=645529.657802 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.6090&rep=rep1&type=pdf
http://dl.acm.org/citation.cfm?id=645529.657802 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.6090&rep=rep1&type=pdf
http://portal.acm.org/citation.cfm?doid=1390156.1390183
http://portal.acm.org/citation.cfm?doid=1390156.1390183
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4031915 http://dl.acm.org/citation.cfm?id=1190614.1191040
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4031915 http://dl.acm.org/citation.cfm?id=1190614.1191040
http://doi.acm.org/10.1145/1143844.1143874
geneontology.org

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	5-2017

	Hierarchical Active Learning Application to Mitochondrial Disease Protein Dataset
	James D. Duin

	Contents
	List of Figures
	List of Tables
	Introduction
	Background and Theory
	Machine Learning
	Evaluating Classifier Performance
	Hierarchical Bioinformatics Data Set
	Coarse-grained vs. Fine-grained Trade Off
	Active Over-Labeling
	Hierarchical Active Learning
	Dynamically Adapting Purchase Proportions

	Related Work
	Previous work in Active Learning
	Application to Dispatch Dataset

	Experimental Setup
	Training and Testing Coarse-Grain and Fine-Grain Classifiers
	Varying SVM Scaling Methods
	Varying SVM Kernels
	Varying SVM Feature Selection
	Varying Logistic Regression Scaling
	Varying Logistic Regression Feature Selection
	Varying Logistic Regression Positive Class Weight and Cost
	Varying Logistic Regression Fine Class Weights
	Tune Fine Class 1 Weights
	Tune Fine Class 2 Weights
	Tune Fine Class 3 Weights
	Tune Fine Class 4 Weights
	Tune Fine Class 5 Weights
	Tune Fine Class 6 Weights
	Tune Fine Class 7 Weights
	Tune Fine Class 8 Weights

	Varying Logistic Regression Tolerance
	Varying Sample Weight On Test Set and Dropping Intermediate ROC Curve Values
	Varying Logistic Regression Positive Class Weight for Full Dataset
	Varying SVM Cost and Gamma

	Results and Analysis
	SVM and Logit Classifier Performance
	Active vs. Passive Curve Analysis
	Plots for Logistic Regression Active vs. Passive Curves
	Plots for SVM Active vs. Passive Curves

	Plots for Fine Fixed Ratio Results
	BANDIT Approach Results

	Conclusions and Future Work
	Bibliography

